



#### **Department of Electronics and Telecommunication Engineering**

Academic Year 2021-22

Semester: \_\_\_\_VI\_\_

Year: <u>TY</u>

Subject: \_COMPUTER COMMUNICATION NETWORK \_Course Code: 1U XC604

| Questi<br>on No. | Module 1_ (Introduction to service model)                                                                                | BT<br>Le<br>vel | СО  |
|------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------|-----|
| 1                | What is a token and explain its function in ring topology.                                                               | 2               | CO1 |
| 2                | Difference between LAN MAN WAN PAN How does BUS topology work? Is it robust?                                             | 1               | CO1 |
| 3                | What makes a network effective and efficient?                                                                            | 1               | CO1 |
| 4                | Define Unicasting, Broadcasting, Multicasting and Anycasting                                                             | 2               | CO1 |
| 5                | Explain Repeater, Hub, Bridge, Switch, Gateway                                                                           | 2               | CO1 |
|                  | Module _2 (Physical layer )                                                                                              |                 |     |
| 1                | What is a UTP cable?                                                                                                     | 2               | CO2 |
| 2                | Compare between – Coaxial cable and Optical fiber cable                                                                  | 1               | CO2 |
| 3                | What are different types of routing algorithms in the Network layer?                                                     | 3               | CO2 |
| 4                | Compare DSL and HFC media                                                                                                | 2               | CO2 |
| 5                | Explain OSI reference model                                                                                              | 1               | CO2 |
|                  | Module 3(Data link layer )                                                                                               |                 |     |
| 1                | What is ALOHA? Derive the expression for the slotted and pure ALOHA.                                                     | 2               | CO3 |
| 2                | Explain CSMA Protocols. How are collisions handled CSMA/CD                                                               | 3               | CO3 |
| 3                | Short note on Byte stuffing and Bit stuffing                                                                             | 2               | CO3 |
| 4                | Explain Go-back-N ARQ protocol in brief. Also compare and contrast the Go-Back-N ARQ Protocol with Selective-Repeat ARQ. | 3               | CO3 |
| 5                | Explain various types of frames in HDLC.                                                                                 | 1               | CO3 |





|   | Module 4(Network layer)                                                                                                                                                                                                                                                                                                             |   |     |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| 1 | What is subnetting? List advantages and disadvantages of the same.                                                                                                                                                                                                                                                                  | 2 | CO4 |
| 2 | Explain Dijkstra Algorithm with one example                                                                                                                                                                                                                                                                                         | 2 | CO4 |
| 3 | What is Subnetting? An organization is given the block 17.12.40.0/26, which contains 64 addresses. The organization has three offices and needs to divide the addresses into three sub blocks of 32, 16, and 16 addresses using subnetting. Identify the mask for individual subnet, Also assign IP addresses to respecting subnet. | 3 | CO4 |
| 4 | Identify the class of given IP addresses: (1) 130.1.1.1 (2) 95.20.2.1                                                                                                                                                                                                                                                               | 2 | CO4 |
| 5 | Explain Circuit switching. Virtual-circuit switching and Datagram switching                                                                                                                                                                                                                                                         | 1 | CO4 |
|   | Module 5(Trans[port layer )                                                                                                                                                                                                                                                                                                         |   |     |
| 1 | Describe Go back N ARQ and Selective reject ARQ .                                                                                                                                                                                                                                                                                   | 2 | CO5 |
| 2 | Discuss pros and cons of DS-CDMA and FH- CDMA protocols                                                                                                                                                                                                                                                                             | 2 | CO5 |
| 3 | Explain congestion control in TCP.                                                                                                                                                                                                                                                                                                  |   | CO5 |
| 4 | Describe TCP header with diagram.                                                                                                                                                                                                                                                                                                   |   | CO5 |
| 5 | Explain Segmentation and Reassembly with respect to Transport layer                                                                                                                                                                                                                                                                 |   | CO5 |
|   | Module 6 (Application layer layer)                                                                                                                                                                                                                                                                                                  |   |     |
| 1 | List down different protocols supported at Application layer                                                                                                                                                                                                                                                                        |   | CO6 |
| 2 | Explain DNS in detail                                                                                                                                                                                                                                                                                                               |   | CO6 |
| 3 | What are the three sections of the domain name space on the internet? Describe the details.                                                                                                                                                                                                                                         |   | CO6 |
| 4 | Compare HTTP ,DNS and TELNET Application Layer Protocol.                                                                                                                                                                                                                                                                            |   | CO6 |
| 5 | Explain FTP in detail. Mention its limitation and justify how these limitations are overcome in TFTP.                                                                                                                                                                                                                               |   | CO6 |





#### **Department of Electronics and Telecommunication Engineering**

Academic Year 2021-22

Semester: \_VI

Year: TY

Subject: \_Database Management System

**Course Code: 1UEXDLC6054** 

| Question No. | Module 01 (Introduction to Databases and Transactions)                                                                                                                                                                                | BT<br>Level | СО  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|
| 1            | List advantages of DBMS                                                                                                                                                                                                               | U           | CO1 |
| 2            | What is logical data independence                                                                                                                                                                                                     | U           | CO1 |
| 3            | Explain different types of schemas                                                                                                                                                                                                    | R           | CO1 |
| 4            | Explain Data definition language                                                                                                                                                                                                      | R           | CO1 |
| 5            | Explain Data manipulation language                                                                                                                                                                                                    | R           | CO1 |
| 6            | Why does a DBMS interleave the actions of different transactions instead of executing transactions one after the o                                                                                                                    | A           | CO1 |
| 7            | Why would you choose a database system instead of simply storing data<br>in operating system files? When would it make sense not to use a<br>database system?                                                                         | A           | CO1 |
| 8            | Explain 2-tier architecture                                                                                                                                                                                                           | U           | CO1 |
| 9            | Explain 3-tier architecture                                                                                                                                                                                                           | U           | CO1 |
| 10           | Explain data independence                                                                                                                                                                                                             | U           | CO1 |
| 11           | Explain the difference between logical and physical data independence.                                                                                                                                                                | U           | CO1 |
| 12           | <ul><li>Which of the following plays an important role in representing information about the real world in a database? Explain briefly.</li><li>1. The data definition language.</li><li>2. The data manipulation language.</li></ul> | A           | CO1 |
|              | <ol> <li>The buffer manager.</li> <li>The data model.</li> </ol>                                                                                                                                                                      |             |     |
| 13           | Explain the term file system vs DBMS                                                                                                                                                                                                  | U           | CO1 |
|              | Module 02 (Data Models)                                                                                                                                                                                                               |             |     |
| 14           | Explain the term attribute                                                                                                                                                                                                            | U           | CO2 |





| 15 | Explain the                                                                                                     | term one to many relat                 | tionship                                                | U | CO2 |  |
|----|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------|---|-----|--|
| 16 | Explain the term many to one relationship                                                                       |                                        |                                                         |   | CO2 |  |
| 17 | Explain the                                                                                                     | Explain the term weak entity set       |                                                         |   |     |  |
| 18 | Explain the                                                                                                     | term aggregation                       |                                                         | U | CO2 |  |
| 19 | List and exp                                                                                                    | lain different types of o              | cardinalities                                           | R | CO2 |  |
| 20 | Write short                                                                                                     | note on primary key                    |                                                         | R | CO2 |  |
| 21 | Write short                                                                                                     | note on foreign key                    |                                                         | R | CO2 |  |
| 22 | Write short                                                                                                     | note on candidate key                  |                                                         | R | CO2 |  |
| 23 | Write short                                                                                                     | note on all types of key               | ys                                                      | R | CO2 |  |
|    | Modu                                                                                                            | ule 03 (Database Des<br>Modellin       | sign, ER-Diagram and Unified<br>ng Language)            |   |     |  |
| 24 | Explain the term normalization                                                                                  |                                        |                                                         |   | co3 |  |
| 25 | What is transitive dependencies                                                                                 |                                        |                                                         | R | co3 |  |
| 26 | Explain types of anomalies                                                                                      |                                        |                                                         | U | co3 |  |
|    | Check the                                                                                                       | below table in first                   | t normal form, if not then                              | Α | co3 |  |
|    | convert.                                                                                                        | -                                      |                                                         |   |     |  |
|    | Roll no                                                                                                         | Name                                   | Course                                                  |   |     |  |
| 27 | 1                                                                                                               | Sai                                    | C/C++                                                   |   |     |  |
|    | 2                                                                                                               | Harsh                                  | Java                                                    |   |     |  |
|    | 3                                                                                                               | Omkar                                  | C/DBMS                                                  |   |     |  |
| 28 | In relation I<br>FD{AB                                                                                          | R(ABCD), functional de                 | pendencies are given,<br>ne candidate key?              | Α | co3 |  |
| 29 | In relation R(ABCDEF), functional dependencies are given,<br>FD{CF, EA, ECD, AB}, What is the candidate<br>kev? |                                        |                                                         | A | co3 |  |
| 30 | Draw UML                                                                                                        | diagram for shopping a                 | арр                                                     | Α | co3 |  |
| 31 | Draw UML                                                                                                        | class diagram for librar               | y management system                                     | Α | со3 |  |
| 32 | In relation I<br>FD{AB                                                                                          | R(ABCDEF), check the h<br>, CDE, EF, F | nighest normal form,<br>▶A}, What is the candidate key? | A | co3 |  |





|                | Module-04 (Relational Algebra and Calculus) |               |       |           |                |          |   |     |
|----------------|---------------------------------------------|---------------|-------|-----------|----------------|----------|---|-----|
| 33 Expl        | Explain selection operator                  |               |       |           |                |          | U | Co4 |
| 34 <b>Expl</b> | ain projection                              | operator      |       |           |                |          | U | Co4 |
| 35 List        | different basic                             | operators     |       |           |                |          | U | Co4 |
| 36 <b>Expl</b> | ain Cross prod                              | luct          |       |           |                |          | U | Co4 |
| 37 <b>Expl</b> | ain Union ope                               | rator         |       |           |                |          | U | Co4 |
| 38 List        | and explain ty                              | pes of joins  | 5     |           |                |          | U | Co4 |
| 39 Find        | Left outer join                             | n of the foll | 0     | ving tabl | es             |          | U | Co4 |
| E_N            | Io E_Name                                   | Address       |       | D_No      | D_Name         | Location |   |     |
| E1             | Varun                                       | D1            | ,<br> | D1        | ІТ             | Delhi    |   |     |
| E2             | Raghav                                      | D2            | ĺ     | D2        | HR             | Chennai  |   |     |
| E3             | Aditya                                      | D1            |       | D3        | Finance        | Pune     |   |     |
| E4             | Rashmi                                      | _             | ĺ     |           | 1              | 1        |   |     |
|                | Employee                                    | Table         | •     | I         | Departmen      | t Table  |   |     |
| 40 Find        | Right outer jo                              | oin of the fo | ollo  | owing tal | bles           |          | U | Co4 |
| E_1            | Io E_Name                                   | Address       |       | D_No      | D_Name         | Location |   |     |
| E1             | Varun                                       | D1            |       | D1        | ІТ             | Delhi    |   |     |
| E2             | Raghav                                      | D2            |       | D2        | HR             | Chennai  |   |     |
| E3             | Aditya                                      | D1            |       | D3        | Finance        | Pune     |   |     |
|                | Γ                                           | T             |       |           |                |          |   |     |
|                | Employee                                    | Table         |       | I         | l<br>Departmen | t Table  |   |     |
|                | Module                                      | e 05 (Constr  | ai    | nts, View | s and SQL)     |          |   |     |
| 41 Wha         | t is constraint                             |               |       |           |                |          | U | Co5 |
| 42 Wha         | t is views in d                             | atabase       |       |           |                |          | U | Co5 |





| 43 | Compare tables and views  |                               |                 |               |        | R | Co5 |
|----|---------------------------|-------------------------------|-----------------|---------------|--------|---|-----|
| 44 | Write advantages of views |                               |                 |               |        | U | Co5 |
| 45 | What is                   | s nested subque               | eries           |               |        | U | Co5 |
| 46 | Write s                   | hort note on co               | nstraint        |               |        | U | Co5 |
| 47 | Write s                   | hort note on vie              | ews             |               |        | U | Co5 |
|    | Write S<br>maxim          | QL query to dis<br>um salary. | play employee   | name who is   | taking | A | Co5 |
|    | E_Id                      | E_Name                        | Department      | Salary        |        |   |     |
|    | 1                         | Jatin                         | Finance         | 50000         |        |   |     |
| 48 | 2                         | Pratham                       | ІТ              | 20000         |        |   |     |
|    | 3                         | Ram                           | HR              | 30000         |        |   |     |
|    | 4                         | Somesh                        | ІТ              | 15000         |        |   |     |
|    | 5                         | Siddharth                     | HR              | 56000         |        |   |     |
|    |                           | Employe                       | e Table         |               | -      |   |     |
| 49 | Explain                   | how aggregate                 | function work   | on null value | es     | Α | Co5 |
|    | Calcula                   | te Nth highest s              | alary using SQI | -             |        | Α | Co5 |
|    | E_Id                      | Salary                        |                 |               |        |   |     |
|    | 1                         | 10000                         |                 |               |        |   |     |
| 50 | 2                         | 20000                         |                 |               |        |   |     |
|    | 3                         | 30000                         |                 |               |        |   |     |
|    | 4                         | 40000                         |                 |               |        |   |     |
|    | 5                         | 50000                         |                 |               |        |   |     |
| 51 | Calcula                   | te 4th highest s              | alary using SQL |               |        | Α | Co5 |





|    | E_Id      | Salary          |               |               |                   |   |     |
|----|-----------|-----------------|---------------|---------------|-------------------|---|-----|
|    | 1         | 10000           |               |               |                   |   |     |
|    | 2         | 20000           |               |               |                   |   |     |
|    | 3         | 30000           |               |               |                   |   |     |
|    | 4         | 40000           |               |               |                   |   |     |
|    | 5         | 50000           |               |               |                   |   |     |
|    | Module    | 06 (Transact    | tion manage   | ment and Con  | currency control) |   |     |
| 52 | Define a  | tomicity        |               |               |                   | R | Co6 |
| 53 | Define c  | onsistency      |               |               |                   | R | Co6 |
| 54 | Define is | solation        |               |               |                   | R | Co6 |
| 55 | Define d  | lurability      |               |               |                   | R | Co6 |
|    | Check co  | onflict pairs i | in other trai | nsactions and | draw edges        | Α | Co6 |
|    | <br>  r   |                 |               | 1             | ٦                 |   |     |
|    |           | T1              | T2            | Т3            |                   |   |     |
|    |           | R(x)            |               |               |                   |   |     |
|    |           |                 |               | R(y)          |                   |   |     |
| 56 |           |                 |               | R(x)          |                   |   |     |
|    |           |                 | R(y)          |               |                   |   |     |
|    |           |                 | R(z)          |               |                   |   |     |
|    |           |                 |               | W(y)          |                   |   |     |
|    |           |                 | W(z)          |               |                   |   |     |
|    |           | R(z)            |               |               |                   |   |     |





|    |                                                       | W(x)         |              |     |   |     |     |
|----|-------------------------------------------------------|--------------|--------------|-----|---|-----|-----|
|    |                                                       | W(z)         |              |     |   |     |     |
| 57 | Write short note on shared exclusive locking protocol |              |              |     |   |     | Co6 |
| 58 | Explain the drawbacks of shared exclusive locking     |              |              |     | Α | Co6 |     |
| 59 | write short note on timestamp ordering protocol       |              |              |     |   | Α   | Co6 |
| 60 | Draw and explain transaction states                   |              |              |     |   | Α   | Co6 |
| 61 | Explain properties of ACID                            |              |              |     |   | Α   | Co6 |
| 62 | What is Schedule, compare serial vs parallel schedule |              |              |     |   | Α   | Co6 |
| 63 | Explain co                                            | onflict equi | valent sched | ule |   | Α   | Co6 |





#### **Department of Electronics and Telecommunication Engineering**

Academic Year 2021-22

Semester: VI

Year: TY

Subject: Electromagnetics and Antenna

Course Code: <u>1UEXC601</u>

| Question<br>No. | Module 1 (Introduction to static field)                                                                                                                                                                                                                      | BT<br>Level | СО |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|
| 1               | <ol> <li>Explain the followings.</li> <li>Coulombs Law</li> <li>Electric field Intensity</li> <li>Gauss Law</li> <li>Continuity equations</li> <li>Laplace's and poisons equations</li> <li>Biot Savart Law</li> <li>Gauss Law for magnetic field</li> </ol> | U           | 1  |
| 2               | Three equal point charges of $2\mu$ C are located at (0,0,0) m, (2,0,0) m<br>and (0,2,0) m respectively in free space. Find out net force on Q4= 5<br>$\mu$ C at (2,2,0) m.                                                                                  | Ap          | 1  |
| 3               | A dipole having a moment $p=12ax-6ay+7az$ nC.m is located at Q (3,4,1) in free space. (a)Find V at P(x, y,z) (b) Find V at P (5,1,0).                                                                                                                        | Ар          | 1  |
| 4               | A charge is located in free space at $P(a,0,0)$ . Prepare a sketch of magnitude of force on as a function of a produced by two other charges, at $(0,1,0)$ and : (a) 4C at $(0,-1,0)$ ; (b) -2 C at $(0,-1,0)$ .                                             | Ар          | 1  |
| 5               | Explain the concept of potential gradient and the relation between electric field and potential.                                                                                                                                                             | U           | 1  |
|                 | Module 2 (Electromagnetic field and Maxwell's equation)                                                                                                                                                                                                      |             |    |
| 1               | Explain boundary conditions of E and H fields for two media                                                                                                                                                                                                  | U           | 2  |
| 2               | Derive Maxwell's equations in integral and point form for static field                                                                                                                                                                                       | Ар          | 2  |
| 3               | Define Skin Depth, and calculate it for a wave travelling in a conductor ( $\sigma = 3.5X107$ S/m), with a frequency of 100 MHz $\epsilon$ r=1.2, $\mu$ r=1.                                                                                                 | Ар          | 2  |





| 4 | Write the generalized Maxwell's Equation in point form and integral form.                                                                                                                                                                                                                                                                                                                                                              | U  | 2 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|
| 5 | Derive Maxwell's equations in integral & Point form for time<br>varying<br>fields.                                                                                                                                                                                                                                                                                                                                                     | U  | 2 |
| 6 | Starting with Maxwell's equations derive the expression for the wave<br>equation for an electromagnetic wave propagating in a perfect dielectric.                                                                                                                                                                                                                                                                                      | Ар | 2 |
|   | Module 3 (Transmission Line)                                                                                                                                                                                                                                                                                                                                                                                                           |    |   |
| 1 | Draw the following on the smith chart. The normalizing impedance<br>is 50 $\Omega$ . (a). 50+j75 $\Omega$ , (b). 10+j0 $\Omega$ (c). 0-j80 $\Omega$ (d). reflection<br>coefficient = $\Gamma$ = 0.3 $\perp$ 60°. (e). constant VSWR circle for $\rho$ = 2.5 (f).<br>minimum resistance point on the constant VSWR circle for $\rho$ = 1.5                                                                                              | Ар | 3 |
| 2 | A 50 $\Omega$ loss less transmission line is terminated by a load impedance ZL= 50-j75 $\Omega$ . If the incidence power is 100 mW, find the power dissipated by the load.                                                                                                                                                                                                                                                             | Ар | 3 |
| 3 | Two lossy lines are to be joined by end to end. The first line is 10 m long and has a loss rating of 0.20 dB/m. The second line is 15 m long and has a loss rating of 0.10 dB/m. The reflection coefficient at the junction (line 1 to line 2) is $\Gamma = 0.30$ . The input power to (to line 1) is 100 mW. (a) Determine the total loss of the combination in dB. (b). Determine the power transmitted to the output end of line 2. | Ap | 3 |
| 4 | The transmission line is connected to a transmission line load<br>impedance 10+j20 at 2 GHz. Find the reflection coefficient (i) at the<br>load end of the line (ii) at a distance of 20 cm from the load.                                                                                                                                                                                                                             | Ар | 3 |
| 5 | A 50 $\Omega$ line is terminated in a load impedance 25+j35 $\Omega$ . With the<br>help of the smith chart find (i) reflection coefficient and<br>impedance at a distance of 0.2 $\lambda$ from the load end of the line<br>(ii) VSWR on the line.                                                                                                                                                                                     | Ар | 3 |











| 3  | Explain polarization of an antenna.                                                                                                           | U        | 4 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
| 4  | Show that the directivity of an isotropic antenna is unity.                                                                                   | U        | 4 |
| 5  | Explain the mechanism of Ionospheric propagation. Define critical frequency, MUF and OWF.                                                     | <u>U</u> | 4 |
| 6  | Explain the antenna radiation regions (near field, inductive field and radiation field related to antenna).                                   | <u>U</u> | 4 |
| 7  | What is reactive near field. Explain its importance in communication and its applications.                                                    | <u>U</u> | 4 |
| 8  | Describe ground wave propagation.                                                                                                             | <u>U</u> | 4 |
| 9  | Describe space wave propagation.                                                                                                              | <u>U</u> | 4 |
| 10 | Derive the relation for maximum distance between transmitting and receiving antenna (Earth is assumed to be flat) for space wave propagation. | An       | 4 |
| 11 | Explain sky wave propagation. Draw the labelled diagram of the ionosphere.                                                                    | <u>U</u> | 4 |
| 12 | Explain the formation of inversion layer in troposphere.                                                                                      | <u>U</u> | 4 |
| 13 | Enlist the antenna parameters and define it.                                                                                                  |          | 4 |
| 14 | An antenna has a directivity of 20 and a radiation efficiency of 90%.<br>Calculate the gain in dB.                                            | Ар       | 4 |
| 15 | Find the gain of an antenna when physical aperture is 5 m <sup>2</sup> at 2 GHz with efficiency of 70%.                                       | Ар       | 4 |
| 16 | Derive Friss transmission formula. State its significance in wireless communication.                                                          | An       | 4 |
|    | Module 5 (Wire elements and antenna array)                                                                                                    |          |   |





| 1  | Explain single wire radiation mechanism.                              | 1  | 5 |
|----|-----------------------------------------------------------------------|----|---|
| 2  | With neat sketch, describe formation and detachment of electric       | 2  |   |
|    | field lines for short dipole.                                         |    | 5 |
| 3  | With respect to elements of Yag-Uda antenna, describe how             | 3  |   |
|    | radiation pattern can be modified.                                    |    | 5 |
| 4  | With input impedance expression, explain folded dipole antenna.       | 4  | 5 |
| 5  | Explain pattern multiplication of antenna array.                      | 5  | 5 |
| 6  | Explain in detail dipole antenna.                                     | 6  | 5 |
| 7  | Compare Dipole, Monopole and Folded dipole antennas.                  | 7  | 5 |
| 8  | Derive radiation resistance of infinitesimal dipole.                  | 8  | 5 |
| 9  | Write short note on the following                                     | 9  |   |
|    | a. Log periodic antenna                                               |    | 5 |
|    | b. Yagi-uda Antenna                                                   |    |   |
| 10 | Compare Broadside and End fire array.                                 | 10 | 5 |
| 11 | Derive radiation resistance of small dipole. Explain its significance | 11 | 5 |
| 12 | Find the radiation pattern of an array of 4 element fed with same     | 12 |   |
|    | amplitude and opposite phase. find its HPBW AND BWFN.                 |    | 5 |
| 13 | Explain important features of loop antenna. Discuss use of loop       | 13 |   |
|    | antenna in radio direction finding.                                   |    | 5 |
| 14 | Drive an expression for array of two isotropic sources with same      | 14 |   |
|    | amplitude and in phase.                                               |    | 5 |
|    |                                                                       |    | 1 |





| 15 | Derive an expression for array factor of N element linear array, where<br>all elements are equally fed and spaced. Also find the expression for | 15 | 5 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|----|---|
|    | the position of principle maxima, null and secondary maxima.                                                                                    |    |   |
| 16 | What is folded antenna? Draw its typical structure explain working mechanism. Give its advantages.                                              | 16 | 5 |
|    |                                                                                                                                                 |    |   |
| 17 | Compare broadside and End fire array.                                                                                                           | 17 | 5 |
| 18 | Derive radiation resistance of small dipole. Explain its significance.                                                                          | 18 | 5 |
| 19 | Derive expression of radiation resistance of half wavelength dipole                                                                             | 19 |   |
|    | antenna. Why, actual length of half wavelength dipole antenna is lies                                                                           |    | 5 |
|    | between 0.47 $\lambda$ to 0.48 $\lambda$ instead of 0.5 $\lambda$ .                                                                             |    |   |
| 20 | A lossless resonant half wavelength dipole antenna, with input                                                                                  | 20 |   |
|    | impedance of 73 ohms, is connected to a transmission line whose                                                                                 |    |   |
|    | characteristic impedance is 50 ohms. Assuming that the pattern of the                                                                           |    | 5 |
|    | antenna is given approximately by U=B_O [[Sin]] ^3 $\theta$ . Find the                                                                          |    | 5 |
|    | maximum absolute gain of this antenna.                                                                                                          |    |   |
| 21 | Design a 6 element Yagi-uda antenna with folded dipole to provide a                                                                             | 21 |   |
|    | gain of 12 dBi if the operating frequency is 500 MHz.                                                                                           |    | 5 |
|    | Module 6 (Aperture and Patch Antenna)                                                                                                           |    |   |
| 1  | What are the feed mechanism of microstrip antenna, explain anyone?                                                                              | U  | 6 |
| 2  | With neat sketch explain horn antenna also describe how radiation                                                                               | U  |   |
|    | pattern can be modified using physical dimensions of the same                                                                                   |    | 6 |
|    | antenna.                                                                                                                                        |    |   |
|    |                                                                                                                                                 |    |   |





| 3  | Design circular microstrip antenna for 10 GHz frequency                          | Ар |   |
|----|----------------------------------------------------------------------------------|----|---|
|    | application using substrate $\varepsilon_r = 2.2$ with thickness of 1.588 mm.    |    | 6 |
|    | Design circular microstrip antenna for 2.45 GHz frequency                        | An |   |
| +  | Design circular interosulp antenna for 2.45 GHz frequency                        | Ар | 6 |
|    | application using FR4 substrate $\varepsilon_r = 4.4$ with unckness of 1.0 mm.   |    | 0 |
| 5  | Draw the structure of microstrip antenna, discuss its characteristics,           | U  |   |
|    | limitations and applications.                                                    |    | 6 |
| 6  | Write short note on the following                                                | U  |   |
|    | a Microstrin antenna                                                             |    |   |
|    |                                                                                  |    |   |
|    | b. Principle of parabolic reflector antenna.                                     |    | 6 |
|    | c. Horn antenna.                                                                 |    |   |
|    |                                                                                  |    |   |
|    | d. Different feeding method of MSA                                               |    |   |
| 7  | Describe parabolic reflector antenna and its different feeding method.           | U  |   |
|    |                                                                                  |    | 6 |
| 8  | Design a rectangular microstrip antenna of 2.45 GHz operating                    | Ap |   |
|    | frequency considering FR4 substrate with $\varepsilon r = 4.4$ with thickness of |    | 6 |
|    | 1.6 mm.                                                                          |    |   |
| 9  | Design rectangular microstrip antenna for 2.4GHz frequency                       | Ap |   |
|    | applications using rogers RT/Duroid 5880 substrate of thickness of               |    | 6 |
|    | 1.6 mm.                                                                          |    | 0 |
|    |                                                                                  |    |   |
| 10 | List salient features of microstrip antenna.                                     | U  | 6 |
| 11 | Explain the working of MSA with the help of transmission line                    | U  |   |
|    | model. Also, give its specifications.                                            |    | 6 |
|    |                                                                                  |    |   |





| 12 | Explain the corner and plane reflector. List their application. | U | 6 |
|----|-----------------------------------------------------------------|---|---|
| 13 | Discuss the cassegrain method of feeding parabolic reflectors.  | U | 6 |





#### **Department of Electronics and Telecommunication Engineering**

Academic Year 2021-22

Semester: \_VII

Subject: IOT and Industry 4.0

Year: <u>TY</u>

**Course Code: 1UEXDLC6052** 

| Sr. No | Question                                                   | BT    | CO |
|--------|------------------------------------------------------------|-------|----|
|        |                                                            | Level |    |
| 1      | Module:01 Introduction to IoT                              |       | 1  |
| 1      | Discuss the characteristics of IoT.                        | U     |    |
| 2      | Explain Physical design of IoT.                            | U     |    |
| 3      | Describe, Logical design of IoT.                           | U     |    |
| 4      | Differentiate between IoT and M2M communication.           | An    |    |
| 5      | Discuss Functional Blocks of IoT                           | U     |    |
| 6      | List sources of IoT.                                       | U     |    |
| 7      | Explain loT Design Methodology with flow diagram.          | U     |    |
|        |                                                            | U     |    |
| 2      | Module:02 . Network & Communication aspects                |       | 2  |
|        |                                                            |       |    |
| 1      | Describe protocols used in Link Layer.                     | U     |    |
| 2      | Describe protocols used in the link layer.                 | U     |    |
| 3      | Describe the protocols used in the network/Internet layer. | U     |    |
| 4      | Describe the protocols used in the application.            | U     |    |
| 5      | Describe the protocols used in Transport layer.            | U     |    |
| 6      | Explain IoT enabling technologies.                         | U     |    |
| 7      | Explain RESTful environment for IoT.                       | U     |    |
| 8      | Discuss web socket architecture in detail.                 | U     |    |
| 9      | Explain Gateway for IoTI with architecture.                | U     |    |
| 10     | Discuss MQTT protocol structure.                           | U     |    |
| 11     | Discuss CoAP architecture with message format in detail    | U     |    |
| 12     | Describe Modified OSI Model for the IoT/M2M Systems        | U     |    |
| 13     | Describe TU-T Reference Mode                               | U     |    |
| 14     | Describe ETSI M2M Domains and High-level Capabilities      | U     |    |
| 15     | Write a note on communication gateway.                     | U     |    |
| 16     | Write a note on SOAP                                       | U     |    |
| 17     | Describe REST/RESTFul.                                     | U     |    |
| 18     | Describe HTTP.                                             | U     |    |
| 19     | Compare Rest and Restful environment.                      | An    |    |

| 3  | Module :03 . Data Management and Analytics for IoT                                                            |    | 3 |
|----|---------------------------------------------------------------------------------------------------------------|----|---|
| 1  | Describe Apache Hadoop architecture with diagram.                                                             | U  |   |
| 2  | Explain HDFS in detail with diagram.                                                                          | U  |   |
| 3  | Explain YARN in detail with diagram.                                                                          | U  |   |
| 4  | Define MapReduce process for Batch Data Analysis.                                                             | U  |   |
| 5  | Classify Apache Oozie, Apache Spark, Apache Storm,                                                            | An |   |
| 6  | Discuss Apache Storm for Real-time Data Analysis                                                              | U  |   |
| 7  | Differentiate between Hadoop 1.0 and Hadoop 2.0                                                               | An |   |
| 8  | Discuss Chef case study                                                                                       | U  |   |
| 9  | Discuss Puppet case study                                                                                     | U  |   |
| 10 | Discuss NETCONG-YANG case study                                                                               | U  |   |
| 4  | Module 04: Introduction to Industry 4.0                                                                       |    | 4 |
| 1  | Introduce industry 4.0                                                                                        | U  |   |
| 2  | Explain industry 4.0 revolution                                                                               | U  |   |
| 3  | What is Industrial Internet?                                                                                  | U  |   |
| 4  | Compare Industry 4.0 and IIoT                                                                                 | U  |   |
| 5  | Define the Conceptual framework for Industry 4.0                                                              | U  |   |
| 6  | Discuss the Business model for Industry IoT.                                                                  | U  |   |
| 7  | Describe Reference architecture with diagram.                                                                 | U  |   |
| 8  | Discuss CPS (Cyber Physical System) in detail.                                                                | U  |   |
| 9  | Describe Next Generation Sensors.,                                                                            | U  |   |
| 10 | Discuss different Collaborative Platforms for industry 4.0                                                    | U  |   |
| 11 | Explain and Product Lifecycle Management in context of industry 4.0                                           | U  |   |
| 12 | Differentiate between Augmented Reality and Virtual Reality                                                   | An |   |
| 13 | Explain Augmented Reality for industry 4.0 with block diagram                                                 | U  |   |
| 14 | Explain Virtual Reality for industry 4.0 with block diagram                                                   | U  |   |
| 15 | State applications of Augmented Reality                                                                       | U  |   |
| 16 | State applications of Virtual Reality                                                                         | U  |   |
| 5  | Module 05: Introduction to Industrial IoT (IIoT)                                                              |    | 5 |
| 1  | List Industrial IoT- Applications in Healthcare domain.                                                       | U  |   |
| 2  | List Industrial IoT- Applications in Power Plants domain.                                                     | U  |   |
| 3  | List Industrial IoT- Applications in Inventory Management & Quality Control domain.                           | U  |   |
| 4  | List Industrial IoT- Applications in Plant Safety and Security                                                | U  |   |
| 5  | List Industrial IoT- Applications in Facility Management domain.                                              | U  |   |
| 6  | Discuss the importance of Artificial Intelligence in IIoT.                                                    | U  |   |
| 7  | Describe the role of cyber security in Industry 4.0                                                           | U  |   |
| 6  | Module 06 : Industry 4.0 Technologies and Applications                                                        | 6  | 6 |
| 1  | Explain an important for businesses of today and future.                                                      | U  |   |
| 2  | Describe the four market drivers which have amplified the integration of IoTs within current economic systems | U  |   |
| 3  | Discuss IoTs Value Creation in Agriculture industry                                                           | II |   |
| 5  | Discuss 1015 value Creation in Agriculture industry.                                                          | 0  |   |

| 4 | Discuss IoTs Value Creation for smart city concept.  | U |  |
|---|------------------------------------------------------|---|--|
| 5 | Discuss IoTs Value Creation in wearable technologies | U |  |
| 6 | Discuss IoTs Value Creation in Health industry       | U |  |
| 7 | Describe IoTs Value Creation Barriers.               | U |  |





#### **Department of Electronics and Telecommunication Engineering**

Academic Year 2021-22

Semester: VI

Year: TY

Subject: Image Processing and Machine Vision

**Course Code:1UEXC603** 

| Question No. | Module-I(Digital Image Fundamentals and Processing)                                                                                    | BT<br>Level | СО  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|
| 1            | Explain the relation of pixels with respect to its neighbors.                                                                          | U           | 1,2 |
| 2            | Explain the different steps in Image Processing with a diagram.                                                                        | U           | 1,2 |
| 3            | What are different components of image processing? Explain in brief.                                                                   | U           | 1,2 |
| 4            | What do you mean by size of an image and resolution of an image? Explain with an example.                                              | U           | 1,2 |
| 5            | What is sampling and quantization of an image? Explain with a neat diagram.                                                            | U           | 1,2 |
| 6            | What is sampling and quantization of an image? Explain with a neat diagram.                                                            | U           | 1,2 |
| 7            | Compare Point processing methods and neighborhood processing?<br>Give examples for both.                                               | U           | 1,2 |
| 8            | What is Bit Plane Slicing? Explain bit plane slicing with a 4x4 image.                                                                 | U           | 1,2 |
| 9            | Prove that the equalized histogram follows uniform distribution.                                                                       | U           | 1,2 |
| 10           | What is the histogram of an image? What information do you get from the histogram?                                                     | U           | 1,2 |
| 11           | What is histogram equalization? What changes are observed in the image output after applying equalization?                             | U           | 1,2 |
| 12           | The equalized histogram of an image is not perfectly uniform. State<br>whether the statement is true or false and justify your answer. | U           | 1,2 |
| 13           | What is piecewise linear transformation? When is it used?                                                                              | U           | 1,2 |
| 14           | What is Gray Level Slicing? Explain with an example                                                                                    | U           | 1,2 |
| 15           | .What is histogram specification? Explain with transformation functions.                                                               | U           | 1,2 |
|              | Module –II (Image Enhancement with Time Domain and Frequency<br>Domain Filters)                                                        |             |     |
| 1            | Explain the low pass filters used for image enhancement in the spatial domain.                                                         | U           | 2,3 |





| 2  | Compare the high pass and low pass filters with respect to their         | U   | 2,3 |
|----|--------------------------------------------------------------------------|-----|-----|
|    | performance. What changes in the image do you observe? Write the         |     |     |
|    | masks for both filters.                                                  |     |     |
| 3  | What is salt and Pepper Noise? Draw the PDF of the same and              | U   | 2,3 |
|    | explain how it can be eliminated from the image?                         |     |     |
| 4  | What do you mean by Gradient operator and Laplacian operator?            | U   | 2,3 |
|    | Derive the masks for both.                                               |     |     |
| 5  | Explain any three types of point processing techniques and their         | U   | 2,3 |
|    | applications with examples.                                              |     | ,   |
| 6  | What are the similarities and differences between Gradient operator      | U   | 2,3 |
|    | and Laplacian operator?                                                  |     | ,   |
| 7  | What do you mean by Unsharp masking and High Boost filtering?            | U   | 2.3 |
| -  | What are their applications?.                                            | _   | y - |
| 8  | What is segmentation? What are the rules followed when defining          | U   | 2.3 |
| -  | regions of an image?                                                     |     | _,_ |
| 9  | Draw the profiles of a line and an edge and draw the responses when      | U   | 2.3 |
| -  | a first order and second order derivative is operated on both.           | C   | _,c |
| 10 | Justify why median filter is better suited for image affected with Salt- | U   | 2.3 |
| 10 | Pepper noise                                                             | C   | 2,5 |
| 11 | Explain repetitive equalization of image produces the same results       | U   | 23  |
|    | True or false. Justify.                                                  | C   | 2,5 |
| 12 | Explain any two properties of 2 –D Fourier transform                     | U   | 2.  |
|    |                                                                          | C   | _,  |
| 13 | Explain separable & convolution properties of Fourier transform          | U   | 2,  |
|    |                                                                          |     | ,   |
| 14 | Explain the basic block diagram for image enhancement is frequency       | U   | 2   |
|    | domain                                                                   |     |     |
| 15 | Explain the ideal low pass & high pass filter What is its drawback       | U   | 2   |
|    |                                                                          |     |     |
| 16 | Explain the Butterworth low pass & High pass filter.                     | U   | 2   |
|    |                                                                          |     |     |
| 17 | Explain the Gaussian low pass & high pass filters                        | U   | 2,3 |
|    |                                                                          |     |     |
| 18 | Explain the Gaussian low pass & high pass filters                        | U   | 2,3 |
| 10 |                                                                          | * * | 2.2 |
| 19 | It is difficult to threshold a poorly illuminated image. State whether   | U   | 2,3 |
| 20 | the statement is true or faise and justify your answer                   | TT  | 1.0 |
| 20 | what are different sensors used in practice? Explain in brief.           | U   | 1,2 |
| 21 | White short notes on                                                     | II  | 1.2 |
| 21 | write short notes on<br>Interactive Desolution and Spatial Desolution    | U   | 1,2 |
|    | Intensity Resolution and Spatial Resolution                              |     |     |
|    | isopreierence curves                                                     |     |     |





|    | Photoscopic and Scotopic vision                                                                  |    |     |
|----|--------------------------------------------------------------------------------------------------|----|-----|
|    | Types of sensors and image acquisition.                                                          |    |     |
|    | Averaging filters                                                                                |    |     |
| 22 | Problems based on Image Enhancement                                                              | Ар | 2,3 |
|    | Module –III Image Morphology and Restoration                                                     |    |     |
| 1  | Explain dilation and erosion.                                                                    | U  | 3   |
| 2  | Describe opening and closing                                                                     | U  | 3   |
| 3  | Problems on dilation and erosion                                                                 | Ар | 3   |
| 4  | Problems on opening and closing                                                                  | Ар | 3   |
| 5  | Explain Hit-Miss Transform                                                                       | U  | 3   |
| 6  | Problems on Hit - Miss Transform                                                                 | Ар | 3   |
| 7  | Explain region filling                                                                           | U  | 3   |
| 8  | Problems on region filling                                                                       | Ар | 3   |
| 9  | Explain boundary extraction, thinning and thickening                                             | U  | 3   |
| 10 | Demonstrate image degradation with neat block diagram                                            | U  | 4   |
| 11 | Discuss in detail about inverse filters.                                                         | U  | 4   |
| 12 | Explain the noise models under image restoration                                                 | U  | 4   |
| 13 | Explain in detail about the band reject filter                                                   | U  | 4   |
| 14 | Compare the spatial domain filters and frequency domain filters used in<br>Image restoration     | U  | 4   |
| 15 | Discuss the principal techniques to estimate the degradation function for the image restoration. | U  | 4   |
| 16 | Explain how inverse filters are used for image restoration.                                      | U  | 4   |
| 17 | Distinguish between Image Enhancement & image restoration.                                       | U  | 4   |
| 18 | Problems on Image Restoration and Morphology                                                     | Ар | 3,4 |
|    | Module IV (Image Segmentation)                                                                   |    |     |
| 1  | Discuss about point, line and edge detection used for image segmentation                         | U  | 2,3 |
| 2  | Demonstrate how Laplacian operators are invariant to rotation.                                   | U  | 2,3 |





| 3  | Explain how the graph theoretic technique is used for edge linking with example      | U  | 2,3 |
|----|--------------------------------------------------------------------------------------|----|-----|
| 4  | Describe the Hough transform implementation for edge linking                         | U  | 2,3 |
| T  | Explain the process of edge linking using local processing                           |    |     |
| 5  | Explain region growing, splitting and region merging methods for image segmentation. | U  | 2   |
| 6  | Explain the LOG operator.                                                            | U  | 2,3 |
| 7  | What is thresholding ? How it is used in image segmentation                          | U  | 2   |
| 8  | Explain the role of illumination in thresholding                                     | U  | 2   |
| 9  | Explain the local adaptive thresholding                                              | U  | 2   |
| 10 | Explain the basic global thresholding                                                | U  | 2   |
| 11 | Explain the optimal global adaptive thresholding                                     | U  | 2   |
| 12 | Write short note on Hough transform                                                  | U  | 2,3 |
| 13 | Problems on Region Growing, Region splitting                                         | Ар | 2   |
| 14 | Problems on Graph Theoretic technique and Hough transform                            | Ар | 3   |
| 15 | All the problems related to image segmentation                                       | Ар | 2,3 |
|    | Module – V (Introduction to Machine Vision and Descriptors)                          |    |     |
| 1  | Explain the boundary descriptors.                                                    | U  | 5   |
| 2  | Discuss about different boundary representations                                     | U  | 5   |
| 3  | Discuss the regional descriptors                                                     | U  | 5   |
| 4  | How the texture analysis is carried out using the co-occurrence matrix               | U  | 5   |
| 5  | Explain the importance of image representation and description                       | U  | 5   |
| 6  | Discuss the texture based classification for image description                       | U  | 5   |
| 7  | Explain the chain code with an example.                                              | U  | 5   |
| 8  | Discuss about the Fourier descriptors                                                | U  | 5   |
| 9  | Write a short note on Boundary segments                                              | U  | 5   |
| 10 | Problems based on Boundary Descriptors                                               | Ар | 5   |
| 11 | What do you understand by signatures? How they are used for image representation     | U  | 5   |





| 12 | Describe topological descriptors                                               | U | 5 |
|----|--------------------------------------------------------------------------------|---|---|
|    | Module VI (Machine Vision Algorithms)                                          |   |   |
| 1  | Explain the different techniques of knowledge representation                   | U | 6 |
| 2  | Explain the classification principle for machine learning algorithm            | U | 6 |
| 3  | Explain the classifier Design .                                                | U | 6 |
| 4  | Describe the classifier learning algorithm.                                    | U | 6 |
| 5  | Explain the K nearest neighborhood algorithm for classification                | U | 6 |
| 6  | What is the confusion matrix and how is it evaluated? Explain the significance | U | 6 |
| 8  | Explain the Bayes decision theory continuous case,                             | U | 6 |
| 9  | Explain the Maximum Likelihood Classification                                  | U | 6 |
| 10 | Discuss the Bayesian classifier                                                | U | 6 |
| 11 | What is Support Vector Machine, Explain the SVM classifier                     | U | 6 |
| 12 | What is supervised classification? Explain with example                        | U | 6 |
| 13 | What is unsupervised classification? Explain with example                      | U | 6 |
| 14 | Compare Supervised and Unsupervised Classification                             | U | 6 |





K J Somaiya Institute of Engineering and Information Technology

An Autonomous Institute permanently affiliated to University of Mumbai Accredited NAAC and NBA, Approved by AICTE, New Delhi

#### Department of Electronics and Telecommunication Engineering

### Machine Learning (1UEXC602)

#### Academic year 2021-22

#### **Course Outcomes:**

- 1. Explain the concepts related Machine Learning
- 2. Mathematically analyse various machine learning approaches and paradigms
- 3. Compare and contrast pros and cons of various machine learning techniques and to get an insight of when to apply a particular machine learning approach
- 4. Deploy machine learning algorithms using various evaluation techniques.
- 5. Implement supervised and unsupervised machine learning algorithms for real-world applications, while understanding the strengths and weaknesses.
- 6. Fine tune machine learning algorithms and evaluate models generated from data

| No.                          | Question                                                                                                                                                                                                                                                                                                                               | BT | CO |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| Modu                         | lle 1 (Introduction)                                                                                                                                                                                                                                                                                                                   |    |    |
| 1                            | Define Machine Learning. Explain how machine learning is different than conventional programming?                                                                                                                                                                                                                                      | An | 1  |
| 2                            | What are the types of Machine Learning? Explain the types in brief with examples.                                                                                                                                                                                                                                                      | U  | 1  |
| 3                            | Explain Supervised Learning with example.                                                                                                                                                                                                                                                                                              | U  | 1  |
| 4                            | Explain Unsupervised Learning with example.                                                                                                                                                                                                                                                                                            | U  | 1  |
| 5                            | Explain Reinforcement Learning with example.                                                                                                                                                                                                                                                                                           | U  | 1  |
| 6                            | Write applications of machine learning in different domain. Elaborate with example, how machine learning is useful in solving the problem.                                                                                                                                                                                             | U  | 1  |
| 7                            | Differentiate between Supervised and Unsupervised Learning.                                                                                                                                                                                                                                                                            | U  | 1  |
| 8                            | Differentiate between the Supervised, Unsupervised and Reinforcement Learning with example.                                                                                                                                                                                                                                            | U  | 1  |
| 9                            | <ul> <li>What type of machine learning problem is,</li> <li>a) Predicting the survival of a passenger in the Titanic disaster</li> <li>b) Recognizing handwritten digit</li> <li>c) Forecasting sales for next 6 months for D-Mart</li> <li>d) Suggesting songs on Spotify</li> <li>e) Identifying a fraudulent transaction</li> </ul> | An | 3  |
| Module 2 (Linear Regression) |                                                                                                                                                                                                                                                                                                                                        |    |    |
| 1                            | Write expression for hypothesis, cost function and for parameter using gradient                                                                                                                                                                                                                                                        | U  | 1  |

|    | descent for univariate linear regression. Explain each term in short.                                |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
|----|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------|-----------------------------------------|--------|------------|--------|---------|---------|----------|---------------|---|---|
| 2  | Write expression for hypothesis, cost function and for parameter using gradient                      |                                                                                   |           |                                         |        |            |        |         |         |          |               | 1 |   |
| Z  | descent for multivariate linear regression. Explain each term in short.                              |                                                                                   |           |                                         |        |            |        |         |         | U        | T             |   |   |
|    | Illustrate process of learning with the gradient descent for a univariate linear                     |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
| 3  | regression, using a bell shaped error curve. Explain how a step size is modulated on                 |                                                                                   |           |                                         |        |            |        |         |         | An       | 2             |   |   |
|    | every i                                                                                              | teratio                                                                           | on.       |                                         |        |            |        |         |         |          |               |   |   |
| 4  | Write s                                                                                              | hort n                                                                            | iote on l | earning                                 | g rate | e. Explain | how it | affects | conver  | gence v  | vith example. | U | 6 |
|    |                                                                                                      |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
|    | Не                                                                                                   | eight                                                                             | 1         | weight                                  |        |            |        |         |         |          |               |   |   |
|    | 174                                                                                                  | 1.706                                                                             | 73        | 73.62273                                |        |            |        |         |         |          |               |   |   |
|    | 188                                                                                                  | .2397                                                                             | 90        | 96.49755                                |        |            |        |         |         |          |               |   |   |
|    | 182.1967                                                                                             |                                                                                   | 9         | 99.8095                                 |        |            |        |         |         |          |               |   | l |
|    | 177.4998                                                                                             |                                                                                   | 93        | 93.59862                                |        |            |        |         |         |          |               |   |   |
|    | 170.8227                                                                                             |                                                                                   | 69        | 9.04222                                 | 2      |            |        |         |         |          |               |   | 5 |
| 5  | 174.7141                                                                                             |                                                                                   | 83        | 3.42822                                 | 2      |            |        |         |         |          |               | Δ |   |
| 5  | 173                                                                                                  | 173.6052                                                                          |           | 5.19035                                 | 5      |            |        |         |         |          |               | п |   |
|    | 170                                                                                                  | .2281                                                                             | 79        | 9.80019                                 | )      |            |        |         |         |          |               |   |   |
|    | 161                                                                                                  | .1795                                                                             | 70        | 0.94164                                 | ł      |            |        |         |         |          |               |   |   |
|    | 180.8363 84.6425                                                                                     |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
|    | The da                                                                                               | The dataset is the records of the height and weight of the employees in a company |           |                                         |        |            |        |         |         |          |               |   |   |
|    | Find the predicted weight for the employees with $\theta_0 = 0.44$ and $\theta_1 = 1.68$ . Calculate |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
|    | the squared root error. Also calculate values $\theta_0$ and $\theta_1$ of after an iteration of     |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
|    | gradient descent optimization.                                                                       |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
|    |                                                                                                      |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
|    | X                                                                                                    |                                                                                   | Y         | Y                                       |        |            |        |         |         |          |               |   |   |
|    | 0                                                                                                    |                                                                                   | 2         |                                         |        |            |        |         |         |          |               |   |   |
|    | 1                                                                                                    |                                                                                   | 3         | }                                       |        |            |        |         |         |          |               |   |   |
| 6  | 2                                                                                                    |                                                                                   | 5         |                                         |        |            |        |         |         |          | ٨             | 5 |   |
| 0  | 3                                                                                                    |                                                                                   | 4         | 4                                       |        |            |        |         |         |          |               |   | A |
|    | 4                                                                                                    |                                                                                   | 6         | 6                                       |        |            |        |         |         |          |               |   |   |
|    | The values of independent variable x and dependent value y are given in the table                    |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
|    | above. Find the least square regression line y=ax+b after two iterations. Predict y                  |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
|    | when X is 10.                                                                                        |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
|    |                                                                                                      |                                                                                   |           |                                         |        |            |        | -       | -       |          |               |   |   |
|    | у                                                                                                    | 1.45                                                                              | 1.93      | 0.81                                    | 0.6    | 1 1.55     | 0.95   | 0.45    | 1.14    | 0.74     | 0.98          |   |   |
| 7  | х                                                                                                    | 0.58                                                                              | 0.86      | 0.29                                    | 0.2    | 2 0.56     | 0.28   | 0.08    | 0.41    | 0.22     | 0.35          | ٨ | F |
|    | Z                                                                                                    | 0.71                                                                              | 0.13      | 13 0.79 0.2 0.56 0.92 0.01 0.6 0.7 0.73 |        |            |        |         |         |          |               | A | 5 |
|    | Calcula                                                                                              | te hyp                                                                            | othesis   | , square                                | ed eri | ror value  | and up | dated p | aramet  | ter valu | es using      |   |   |
|    | gradient descent. Let $\theta_0 = 0.434$ , $\theta_2 = 1.653$ and $\theta_2 = 0.0039$ .              |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
| 8  | Explain                                                                                              | ı polyr                                                                           | nomial r  | egressi                                 | on in  | ı brief.   |        |         |         |          |               | U | 1 |
| Q  | Compa                                                                                                | re adv                                                                            | antages   | and dis                                 | sadva  | antages o  | f Norm | al Equa | tion ov | er Grad  | lient         | П | 2 |
| ,  | 9 Descent.                                                                                           |                                                                                   |           |                                         |        |            |        |         |         | 0        | 5             |   |   |
|    | Solve t                                                                                              | he foll                                                                           | owing p   | roblem                                  | usin   | ig Normal  | Equati | on.     |         |          |               |   |   |
|    | $X_1$ $X_2$ $Y$                                                                                      |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
| 10 | 0                                                                                                    |                                                                                   | 1 2       |                                         |        |            |        |         |         |          |               |   |   |
|    | 1 -2 3                                                                                               |                                                                                   |           |                                         |        |            |        |         |         |          |               |   |   |
|    | 2                                                                                                    |                                                                                   | 1         | 5                                       |        |            |        |         |         |          |               |   |   |

|      | 3                                                                                        | 3         |                | 4         |                |           |            |                  |                      |           |    |   |  |  |  |  |
|------|------------------------------------------------------------------------------------------|-----------|----------------|-----------|----------------|-----------|------------|------------------|----------------------|-----------|----|---|--|--|--|--|
|      | 4                                                                                        | -1        |                | 6         |                |           |            |                  |                      |           |    |   |  |  |  |  |
|      | Also predict y if x =10.                                                                 |           |                |           |                |           |            |                  |                      |           |    |   |  |  |  |  |
| 11   | 1 What is feature scaling? Write significance of feature scaling in machine learning.    |           |                |           |                |           |            |                  |                      |           |    |   |  |  |  |  |
| Modu | Module 3 (Logistic Regression)                                                           |           |                |           |                |           |            |                  |                      |           |    |   |  |  |  |  |
| 1    | Write exp                                                                                | ression   | for hyp        | othesis   | , cost fur     | nction ar | d for pa   | rameter          | r using g            | gradient  | П  | 1 |  |  |  |  |
|      | descent fo                                                                               | or logist | ic regre       | ssion. E  | Explain e      | ach tern  | in shor    | t.               |                      |           | 0  | 1 |  |  |  |  |
| 2    | Explain lo                                                                               | ogistic r | egressio       | n with    | an exam        | ple.      |            |                  |                      |           | U  | 1 |  |  |  |  |
|      |                                                                                          |           |                |           |                |           |            |                  |                      |           |    |   |  |  |  |  |
|      | Age                                                                                      | 20        | 32             | 18        | 29             | 47        | 45         | 46               | 48                   | 45        |    |   |  |  |  |  |
|      | Salary                                                                                   | 0000      | 1800           | 0         | 0              | 2300      | 2000       | 2800             | 2900                 | 2200      |    |   |  |  |  |  |
| 3    | Bought                                                                                   | 0         | 0              | 0         | 0              | 1         | 1          | 1                | 1                    | 1         | A  | 5 |  |  |  |  |
|      | The abov                                                                                 | e data s  | hows th        | e datab   | ase of an      | automo    | bile con   | ipany w          | hether               | a person  |    |   |  |  |  |  |
|      | with the g                                                                               | given ag  | e and sa       | lary ha   | s bought       | a car or  | not. For   | $\theta_0 = 0.0$ | 0002, θ <sub>2</sub> | = -10,    |    |   |  |  |  |  |
|      | calculate predicted value, error and updated value of $\theta$ using logistic regression |           |                |           |                |           |            |                  |                      |           |    |   |  |  |  |  |
|      | after an it                                                                              | eration   |                |           |                |           |            |                  |                      |           |    |   |  |  |  |  |
| 4    | Explain K                                                                                | NN in b   | rief.          |           |                |           |            |                  |                      |           | U  | 1 |  |  |  |  |
|      |                                                                                          |           | T              | n         |                |           |            |                  |                      |           |    |   |  |  |  |  |
|      | Age                                                                                      | 20        | 32             | 18        | 29             | 47        | 45         | 46               | 48                   | 45        |    |   |  |  |  |  |
| 5    | Salary                                                                                   | 8600      | 1800           | 8200      | 8000           | 2500      | 2600       | 2800             | 2900                 | 2200      |    | 5 |  |  |  |  |
|      | <b>D</b> 1.                                                                              | 0         | 0              | 0         | 0              | 0         | 0          | 0                | 0                    | 1         | Α  |   |  |  |  |  |
|      | Bought                                                                                   | 0         |                |           |                |           |            |                  |                      |           |    |   |  |  |  |  |
|      | Using KNN, predict whether a person with age 27 and salary 67000 will but a car          |           |                |           |                |           |            |                  |                      | but a car |    |   |  |  |  |  |
|      | or not. Co                                                                               | nsider    | к=3;           |           |                | ,         |            |                  |                      |           |    |   |  |  |  |  |
|      | Explain following concepts with an example,                                              |           |                |           |                |           |            |                  |                      |           |    | 1 |  |  |  |  |
|      | a) Margin<br>b) Mavimal Margin Classifier                                                |           |                |           |                |           |            |                  |                      |           |    |   |  |  |  |  |
| 6    | b) Maximal Margin Classifier                                                             |           |                |           |                |           |            |                  |                      |           |    |   |  |  |  |  |
|      | d) Hyperplane                                                                            |           |                |           |                |           |            |                  |                      |           |    |   |  |  |  |  |
|      | e) Kernel                                                                                |           |                |           |                |           |            |                  |                      |           |    |   |  |  |  |  |
| -    | Write exp                                                                                | ression   | for ove        | rall cos  | t functio      | n in SVM  | I. Explaiı | n the co         | st functi            | on with a | Δ. | 2 |  |  |  |  |
| /    | graph. W                                                                                 | hat is op | otimizati      | ion obje  | ective of      | SVM and   | l how is   | it achie         | ved?                 |           | An | Z |  |  |  |  |
| 8    | Differenti                                                                               | ate bety  | ween log       | gistic re | gression       | and SV    | М.         |                  |                      |           | U  | 3 |  |  |  |  |
| 9    | Explain ra                                                                               | andom f   | forest in      | brief.    |                |           |            |                  |                      |           | U  | 1 |  |  |  |  |
| 10   | Explain d                                                                                | ecision   | tree in b      | orief.    |                |           |            |                  |                      |           | U  | 1 |  |  |  |  |
|      |                                                                                          |           |                |           |                |           | Г          |                  |                      |           |    |   |  |  |  |  |
|      | Refun                                                                                    | d M       | Marital Status |           | Taxable income |           | Cheat      |                  |                      |           |    |   |  |  |  |  |
|      | Refuti                                                                                   |           |                |           |                |           | Gileat     |                  |                      |           |    |   |  |  |  |  |
| 11   | Yes                                                                                      |           | Single         |           | 125k           |           | No         |                  |                      |           | А  | 5 |  |  |  |  |
|      | No                                                                                       |           | Married        |           | 100k           |           | No         |                  |                      |           |    | U |  |  |  |  |
|      | No                                                                                       |           | Single         |           | 70k            |           | No         |                  |                      |           |    |   |  |  |  |  |
|      | Yes                                                                                      | Marrie    | d              | 120       | k              | No        |            |                  |                      |           |    |   |  |  |  |  |
|      | No Divorced 95k Yes                                                                      |           |                |           |                |           |            |                  |                      |           |    |   |  |  |  |  |

|      | No                                                                                                                                             | Married                                                    | 60k                                     | No                      |                                                    |    |   |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|-------------------------|----------------------------------------------------|----|---|--|--|
|      | Yes                                                                                                                                            | Divorced                                                   | 220k                                    | No                      |                                                    |    |   |  |  |
|      | No                                                                                                                                             | Single                                                     | 85k                                     | Yes                     |                                                    |    |   |  |  |
|      | No                                                                                                                                             | Married                                                    | 75k                                     | No                      |                                                    |    |   |  |  |
|      | No                                                                                                                                             | Single                                                     | 90k                                     | Yes                     |                                                    |    |   |  |  |
|      | Write and exp                                                                                                                                  | plain decision tre                                         | e for the above tra                     | nsaction.               | 1                                                  |    |   |  |  |
| Modu | ıle 4 (Deployn                                                                                                                                 | nent of Machine                                            | Learning Algorit                        | hm)                     |                                                    |    |   |  |  |
| 1    | Define overfit<br>underfitting,<br>overfitting an                                                                                              | tting and underfi<br>explain using dia<br>id underfitting? | tting. How to evalu<br>gram? What measu | ate a ML r<br>ures need | nodel for overfitting or<br>to be taken in case of | U  | 4 |  |  |
| 2    | Why the data<br>Write the rati                                                                                                                 | set need to be sp<br>io of division of t                   | lit into training set<br>he dataset.    | , cross val             | idation and test set.                              | U  | 4 |  |  |
| 3    | Explain Confu                                                                                                                                  | usion Matrix with                                          | n an example.                           |                         |                                                    | U  | 4 |  |  |
| 4    | Draw a confusion matrix for a ML model that predicted 97 non spam and 17 spam<br>mail correctly, while 4 non spam and 7 spam mail incorrectly. |                                                            |                                         |                         |                                                    |    |   |  |  |
| 5    | Define<br>a) Accur<br>b) Precis<br>c) Recal<br>d) F1-Sc<br>e) Speci                                                                            | acy<br>sion<br>l<br>ore<br>ficity                          | ,                                       |                         |                                                    | R  | 4 |  |  |
| 6    | Define ROC. V<br>application th<br>Why?                                                                                                        | Which of the follo<br>nat predicts if the                  | wing point on ROC<br>patient can be dis | gives the charged af    | best threshold for the<br>fter Covid treatment?    | An | 4 |  |  |
| 7    | Define ROC. What is the significance of ROC-AUC with an example.                                                                               |                                                            |                                         |                         |                                                    |    |   |  |  |
| 8    | Explain confu                                                                                                                                  | ision matrix for r                                         | nulticlass classifica                   | tion with               | an example of 3 classes.                           | U  | 4 |  |  |
| Modu | ıle 5 (Unsuper                                                                                                                                 | vised Learning                                             | )                                       |                         |                                                    |    |   |  |  |
| 1    | Differentiate                                                                                                                                  | between Superv                                             | ised Learning and I                     | Unsupervi               | sed Learning                                       | U  | 3 |  |  |
| 2    | Explain the types of Unsupervised Learning with example.                                                                                       |                                                            |                                         |                         |                                                    |    |   |  |  |
| 3    | Explain cluste                                                                                                                                 | ering with an exa                                          | imple.                                  |                         |                                                    | U  | 2 |  |  |
| 4    | Explain agglomerative clustering with example.                                                                                                 |                                                            |                                         |                         |                                                    |    |   |  |  |

|                                                 | Dist                                                                           | А                                 | В         | С        | D            | Е        | F        | 100 L                          |    |   |  |
|-------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------|-----------|----------|--------------|----------|----------|--------------------------------|----|---|--|
| 5                                               | A                                                                              | 0.00                              | 0.71      | 5.66     | 3.61         | 4.24     | 3.20     | D                              |    |   |  |
|                                                 | В                                                                              | 0.71                              | 0.00      | 4.95     | 2.92         | 3.54     | 2.50     |                                |    |   |  |
|                                                 | c )                                                                            | 5.66                              | 4.95      | 0.00     | 2.24         | 1.41     | 2.50     |                                |    | 5 |  |
|                                                 | DΥ                                                                             | 3.61                              | 2.92      | 2.24     | 0.00         | 1.00     | 0.50     | 12                             | A  |   |  |
|                                                 | E                                                                              | 4.24                              | 3.54      | 1.41     | 1.00         | 0.00     | 1.12     |                                |    |   |  |
|                                                 | F                                                                              | 3.20                              | 2.50      | 2.50     | 0.50         | 1.12     | 0.00     | J                              |    |   |  |
|                                                 | Perform h                                                                      | nierarcł                          | nical clu | sterin   | g on th      | e abov   | e exam   | ple.                           |    |   |  |
|                                                 | Use the k-means algorithm and Euclidean distance to cluster the following 8    |                                   |           |          |              |          |          |                                |    |   |  |
| 6                                               | examples                                                                       | into 3 o                          | clusters  | 5:       |              |          |          |                                | А  | 5 |  |
|                                                 | A1=(2,10)                                                                      | ), A2=(2                          | 2,5), A3  | =(8,4),  | <u>A4=(5</u> | ,8), A5  | =(7,5),  | A6=(6,4), A7=(1,2), A8=(4,9).  |    |   |  |
| 7                                               | Write sho                                                                      |                                   | U         | 1        |              |          |          |                                |    |   |  |
| 8                                               | Define dimensionality reduction. Write advantages of dimensionality reduction. |                                   |           |          |              |          |          |                                |    | 1 |  |
| 9                                               | Write short note on Principal Component Analysis.                              |                                   |           |          |              |          |          |                                |    | 1 |  |
| 10                                              | Write PCA                                                                      | A algori                          | thm us    | ing ma   | themat       | tical ex | pressio  | ns.                            | U  | 2 |  |
| Module 6 (Advanced Machine Learning Algorithms) |                                                                                |                                   |           |          |              |          |          |                                |    |   |  |
| 1                                               | Explain ar                                                                     | nomaly                            | detecti   | on wit   | h an ex      | ample    |          |                                | U  | 1 |  |
| 2                                               | Write algorithm for anomaly detection                                          |                                   |           |          |              |          |          |                                |    | 2 |  |
| 3                                               | How to ev                                                                      | valuate                           | the and   | maly d   | letectio     | on mod   | lel.     |                                | U  | 6 |  |
| 4                                               | Differenti                                                                     | ate bet                           | ween A    | nomal    | y Deteo      | ction ar | ıd Supe  | ervised Learning               | U  | 3 |  |
| 5                                               | What are the different methods used for unsupervised learning for anomaly      |                                   |           |          |              |          |          |                                |    | 1 |  |
|                                                 | detection.                                                                     | detection. Explain with examples. |           |          |              |          |          |                                |    |   |  |
| 6                                               | Explain re                                                                     | ecomme                            | ender s   | ystem    | with ar      | n exam   | ple.     |                                | U  | 1 |  |
|                                                 | Explain he                                                                     | ow larg                           | e datas   | et is us | eful in      | machi    | ne lear  | ning? What is the problem with |    |   |  |
| 7                                               | large data                                                                     | iset in g                         | gradien   | t desce  | nt? Ho       | w large  | e datase | ets are dealt with in gradient | An | 5 |  |
|                                                 | descent.                                                                       |                                   |           |          |              |          |          |                                |    |   |  |
| 8                                               | Write sho                                                                      | rt note                           | on onli   | ne lear  | ning.        |          |          |                                | U  | 1 |  |
| 9                                               | Explain m                                                                      | U                                 | 5         |          |              |          |          |                                |    |   |  |