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Abstract
The remote sensing (RS) technique is less cost- and labour- intensive than ground-based 
surveys for diverse applications in agriculture. Machine learning (ML), a branch of arti-
ficial intelligence (AI), provides an effective approach to construct a model for regres-
sion and classification of a multivariate and non-linear system. Without being explicitly 
programmed, machine learning models learn from training data, i.e., past experience. 
Machine learning, when applied to remotely sensed data, has the potential to evolve a real-
time farm-specific management system to reinforce farmers’ ability to make appropriate 
decisions. Recently, the use of machine learning techniques combined with RS data has 
reshaped precision agriculture in many ways, such as crop identification, yield prediction 
and crop water stress assessment, with better accuracy than conventional RS methods. As 
agriculture accounts for approximately 70% of the worldwide water withdrawals, it must be 
used in the most efficient way to obtain maximum yields and food production. The use of 
water management and irrigation based on plant water stress have been demonstrated to not 
only save water but also increase yield. To date, RS and ML-based results have encouraged 
farmers and decision-makers to adopt this technology to meet global food demands. This 
phenomenon has led to the much-needed interest of researchers in using ML to improve 
agriculture outcomes. However, the use of ML for the potential evaluation of water stress 
continues to be unexplored and the existing methods can still be greatly improved. This 
study aims to present an overall review of the widely used methods for crop water stress 
monitoring using remote sensing and machine learning and focuses on future directions for 
researchers.
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NDII  Normalized difference infrared index
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PRI  Photochemical reflectance index
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SSCM  Site specific crop management
ST  Stress time index
SVM  Support vector machine
SWIR  Short wave infrared
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TIR  Thermal infrared
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VIS  Visible
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WABI-1  Water balance indices–1
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List of symbols
∑dRE  Sum of red edge first derivatives
gL  Leaf conductance

Introduction

Agriculture plays a key role in the economy of many countries, especially in developing 
countries such as India and Brazil. Soil health, climate change, humidity, water supply, pol-
lution, rainfall, pests and weeds are all factors that impact whether a high agricultural yield 
can be achieved. Precision agriculture (PA), also known as site-specific crop management 
(SSCM), is an approach to farm management that uses information technology to ensure 
that crops and soil receive exactly what they need for good health and productivity. PA is 
based on observing, measuring and responding to inter- and intra-field spatial variability 
in crops and soils. The aim of PA is to ensure sustainability, profitability and protection 
of the environment. The approach includes accessing real-time data about, inter alia, the 
conditions of crops, soil and evapotranspiration. The benefits of PA are improving crop 
productivity and farm profitability, improving precise hybrid selection and the matching of 
fertilizer application and decreasing chemical bills and fuel costs. Mulla (2013) mentioned 
key advances in remote sensing applications in PA and identified the knowledge gaps. PA 
applications initially worked with ground sensors for soil organic matter and diversified to 
include vehicle-, aircraft- and satellite-mounted sensors. Real-time crop health monitor-
ing that does not affect the environment or crop health is possible when remote sensing is 
used. Mulla (2013) suggested a need for developing precision farming approaches that can 
provide customized management of farm inputs for an individual plant. Further sugges-
tions by Mulla (2013) include working on chemometric or spectral decomposition meth-
ods of analysis, developing sensors to estimate nutrient deficiencies, developing additional 
spectral indices and integrating historical archives of satellite data with real-time data. 
Remote sensing is a means of obtaining and analysing data about an object or phenom-
enon without contact with the object or phenomenon that is under investigation. Remote 
sensing systems are categorized into sensor-based systems and platform-based systems. 
Active sensors (backscatter-based measurements) and passive sensors (reflectance-based 
measurements) ( Mulyono, et  al. 2016) are two types of sensors that capture the reflec-
tance in the electromagnetic (EM) spectrum. Specific remote sensing platforms such as 
ground vehicles, airplanes, satellites and handheld gadgets are utilized to mount the sensor. 
The data acquired by the sensors rely upon four resolutions, spatial, temporal, radiometric 
and spectral and these data are analysed and prepared to utilize in assorted applications. 
Machine learning has the ability to process large amounts of information in a non-linear 
framework. As remote sensing creates much information, ML algorithms are suitable anal-
ysis methods. Various machine learning algorithms, such as decision trees (DTs), support 
vector machines (SVMs), artificial neural networks (ANNs), genetic algorithms (GAs) and 
ensemble learning, have been used effectively on remotely sensed information in farming 
with high precision. Another serious issue of remote sensing in agribusiness is the acquisi-
tion of additional ground truth samples; however, this problem is overcome by SVM algo-
rithms without influencing the exactness of the results as a result of the ability of SVMs to 
prepare models while utilizing few samples (Mountrakis et al. 2011).

Remote sensing applications in farming vary from crop classification, harvest arrange-
ment, crop yield forecast, disease detection and management, evaluation of crop wellbeing 

Author's personal copy



1125Precision Agriculture (2020) 21:1121–1155 

1 3

and crop water stress detection. Detection of crop water stress in different growing seasons 
is necessary to predict yield conditions and plan irrigation scheduling. Different method-
ologies have been investigated to distinguish crop water stress. These methods are based on 
soil water measurements, plant responses and remote sensing. The main aim of this study 
was to review the crop water stress detection approaches for various crops worldwide that 
utilize different remote sensing methods and machine learning algorithms. The results of 
the research are additionally incorporated in the present study, which reveal that diverse 
methodologies are effectively utilized for specific crops. This review is based on a detailed 
study of the literature published in the main remote sensing journals.

Crop water stress detection methods

Water is a key contributing component to the quality and amount of developed yields. 
Water stress is a physiological response of plants when water availability is diminished. 
Harvest water pressure is a lack of water, which is distinguished as a reduction in the soil 
water content or from the physiological reactions of the crop to water shortage (Ihuoma 
and Madramootoo 2017). Crop water stress reduces photosynthesis and transpiration in 
plants. In areas with insufficient rainfall, a proper quantity of water to be fed to crops is 
essential to maintain crop yields and soil conditions. Supplying more water than necessary 
to the field also leads to soil erosion, loss of nutrients and damages the health of crops and 
soil. Water scarcity is another serious problem in arid and semi-arid areas. Proper water 
management is therefore essential in such regions where irrigation is a key factor to attain 
the desired crop yield, crop quality and water utilization. To control irrigation manage-
ment and scheduling, one should know the quantity and timings of the water supply, which 
can be determined with a proper spatial evaluation of plant water stress. A comparative 
analysis of conventional and modern crop water stress assessment methods is provided in 
Table 1 and briefly discussed below.

Field measurement‑based methods

Methods based on soil water measurements

The traditional methods for crop water stress detection are based on in situ soil moisture 
measurements and meteorological variables to assess water loss from a soil–plant system 
(Gonzalez-Dugo et  al. 2006). Soil samples are collected from a few points of the entire 
field with assumptions of uniform water holding capacity, the same soil structure and the 
same evapo-transpiration rate, which are sometimes deceptive in reality. These methods 
provide point information that does not reflect the entire area and are laborious. Other soil-
based methods to detect crop water stress include gravimetric soil water measurements 
(Tanriverdi et  al. 2016; Sharma et al. 2018), soil moisture sensor measurements (Enciso 
et al. 2007) and soil water balance calculations (Ihuoma and Madramootoo 2017).

Methods based on plant responses

Later, plant-based approaches were adopted that were more sensitive than the soil mois-
ture-based approaches, which included stomatal conductance, leaf water potential, rela-
tive water content, stem and fruit diameter and sap flow measurements (Fernandez 2017; 
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Ihuoma and Madramootoo 2017). As one of the most accurate in situ methods, stem water 
potential (Ψstem) is used to assess water stress and can be measured by using a pressure 
chamber (Turner 1988).

Such methods are reliable; however, the assessment of plant water stress with in  situ 
measurements is time-consuming and labour intensive, as they are assessed for each and 
every crop. Moreover, this method provides an inaccurate indication of the whole field due 
to heterogeneity in soil and crops.

Remote sensing‑based methods

Spectral indices‑based methods

With the advent of remote sensing, it is possible to cover a large field with non-invasive and 
productive techniques (Romero et al. 2018) to detect the spatial variability in plant water 
status with high temporal resolution. Remote sensing methods based on spectral vegetation 
indices and infrared thermometry (Ihuoma and Madramootoo 2017) are widely used for 
crop water stress detection because they are non-destructive and not labour- or time-inten-
sive. The remote sensing method is extensively used in vegetation studies that make use of 
the spectral reflectance of crops. Spectral reflectance is a measure of the wavelength of the 
electromagnetic energy collected from objects on Earth. The biochemical and biophysical 
properties of plants, such as biomass, crop evapotranspiration and canopy water content, 
are related to spectral properties that are used for spectral reflectance. Mathematical com-
binations of two or more spectral bands are referred to as spectral indices that are applied 
to detect water stress in crops. Among copious spectral water and vegetation indices, the 
water index (WI) (Zarco-Tejada et al. 2003), normalized difference water index (NDWI) 
(Zarco-Tejada et al. 2003; Rapaport et al. 2015), photo-chemical reflectance index (PRI) 
(Zarco-Tejada et al. 2013), modified soil adjusted vegetation index (MSAVI) (Rozenstein 
et al. 2018), optimal soil adjusted vegetation index (OSAVI) (Romero et al. 2018; Baluja 
et al. 2012), normalized difference vegetation index (NDVI) (Baluja et al. 2012; Rapaport 
et al. 2015) and normalized difference greenness vegetation index (NDGI) (Romero et al. 
2018), to name a few, have been extensively adopted to detect water stress in crops.

Infrared thermometry and CWSI‑based methods

Infrared thermometry is an effective method to assess plant water stress at a local scale 
and is used to schedule irrigation in various crops. This method focuses on measuring the 
canopy temperature, which was originally suggested by Jackson et al. (1977). The variabil-
ity in canopy temperature (Gonzalez-Dugo et al. 2006) and spectral indices derived using 
canopy temperature (Osroosh et al. 2015) have been used to indicate water stress.

The crop water stress index (CWSI), one of the most adopted indicators of plant water 
stress, is computed from canopy temperature. Canopy temperature is inversely related to 
leaf stomatal closure and transpiration. Stomatal closure is a consequence of water stress 
in crops, which, in turn, diminishes the transpiration rate in plants. A low transpiration rate 
decreases the cooling of plants; hence, canopy temperature increases, which is treated as an 
indicator of water stress. This concept forms the basis to develop the CWSI, which was first 
introduced by Jackson et al. (1977), (1981) and Idso et al. (1981). This index is based on 
the vapour pressure deficit (VPD) and the difference between air and canopy temperature. 
The CWSI based on canopy temperature and meteorological terms following Idso et  al. 
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(1981) were used by Rud et al. (2014). The empirical CWSI equation uses upper and lower 
baselines. The empirical CWSI (Idso et al. 1981; Jackson et al. 1981; Veysi et al. 2017) is 
given in Eq. (1)

where dT is given by (Tc-Ta), which is the difference between canopy temperature (Tc) and 
air temperature (Ta);  dTll is the lower baseline of fully watered crops; and  dTul is the upper 
baseline of water-stressed crops.  dTll and  dTul are computed from the atmospheric VPD 
and vapour pressure gradient (VPG), respectively (Veysi et al. 2017). The upper baseline 
provides the difference between air and canopy temperature, which is much less in water-
stressed crops, concluding that the crop lacks water. Relative humidity in air inversely 
affects transpiration in non-water-stressed crops. The lower baseline describes the situation 
for non-water-stressed crops where more transpiration takes place that lowers the canopy 
temperature. The lower baseline depends on the VPD, whereas the upper baseline does not.

The drawback of this approach is the necessity of knowing the non-water stress baseline, 
which varies from crop to crop and local climatic zones (Berni et al. 2009a). To eliminate 
the problem of knowing the non-water stress baseline, Jones (2013) modified the CWSI 
and defined a new normalized CWSI, which is described as follows.

where  Tcanopy is the canopy temperature captured using unmanned aerial vehicle (UAV)-
borne thermal infrared (TIR),  Twet gives the fully transpiring canopy temperature and  Tdry 
represents the water-stressed canopy temperature.  Twet and  Tdry are equivalent to  Tbase and 
 Tmax in the original formula for the CWSI derived by Idso et al. (1981). However, normali-
zation of the CWSI is a more complex process with changing atmospheric conditions than 
using VPD alone. Cohen et  al. (2005) also indicated two drawbacks of using the CWSI 
based on canopy temperature:1. It is difficult to accurately separate canopy temperature 
from the soil background due to the lack of spatial resolution of handheld or airborne sen-
sors, 2. Varying atmospheric conditions complicate the normalization of the CWSI.

LST‑based CWSI

Unlike the method discussed above, where CWSI computation was performed using cal-
culations on the data collected from ground measurements and canopy temperature, Veysi 
et  al. (2017) determined the CWSI using only satellite image data using the following 
equation:

where  Ts is the land surface temperature (LST) derived from a satellite image that gives 
canopy temperature,  Tcold is the temperature of cold pixels and  Thot is the temperature of hot 
pixels. Cold pixels are those covered by fully watered crops and hot pixels represent water-
stressed crops. Bastiaanssen et al. (1998) described evapo-transpiration using the surface 
energy balance algorithm for land (SEBAL) for the selection of hot and cold pixels, which 

(1)CWSI =

(

dT − dTll
)

(

dTul − dTll
)

(2)CWSI =
Tcanopy − Twet

Tdry − Twet

(3)CWSI =
Ts − Tcold

Thot − Tcold
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was followed by Veysi et al. (2017) for cold pixel selection, with little changes suggested 
for hot pixel selection. Hot pixels are selected from the area with maximum water stress. 
LST is a key parameter in the biophysical processes of evapo-transpiration, water and sur-
face energy balance (Li et  al. 2013; Bai et  al. 2015). LST is retrieved from the thermal 
infrared data of satellite imagery but is not calculated directly. LST measurements require 
cloud removal, radiometric calibration, emissivity and atmospheric corrections, which are 
challenging tasks. A remarkable study (Li et al. 2013) provided a review of the progress in 
LST estimations from thermal infrared data primarily captured by polar orbiting satellites. 
The study provides a theoretical basis to extract LST and listed the difficulties, which were 
related to LST, land surface emissivity (LSE), atmosphere coupling, the physical meaning 
of the satellite-derived LST and satellite-derived LST validation problems. They catego-
rized the algorithms into single-channel methods, multi-channel methods and multi-angled 
methods with known LSEs. The methods without a priori known LSEs were categorized 
into a stepwise retrieval method, simultaneous retrieval of LSEs, LST with known atmos-
pheric information and simultaneous retrieval with unknown atmospheric information. 
Validation of the retrieved LST can be undertaken using temperature-based methods, radi-
ance-based methods and cross validation. The existing earth observations (EO) do not pro-
vide TIR images with detailed temporal and spatial resolution simultaneously (Bai et al. 
2015). Bai et al. (2015) used Landsat enhanced thematic mapper plus (ETM +) TIR and 
MODIS images to retrieve the LST to overcome the problem of obtaining TIR images at 
a detailed spatial and temporal resolution from the available satellites. They developed a 
novel fusion method by combining image fusion and spatio-temporal fusion techniques to 
derive LST. First, an extreme machine learning algorithm was applied to enhance the spa-
tial resolution of Landsat ETM+TIR data. After that, MODIS LST and thermal sharpened 
Landsat data were fused using the spatio-temporal adaptive data fusion algorithm for tem-
perature mapping (SADFAT) (Weng et al. 2014) to derive synthetic data with high tempo-
ral resolution.

Evapotranspiration‑based methods

Land surface evapotranspiration (ET) measures the amount of water lost to the atmosphere 
through soil evaporation and plant transpiration. ET influences water resources, water 
rights management and the hydrological cycle at local and regional scales. Penman (1948) 
established a framework for relating evapotranspiration to meteorological factors (Allen 
et al. 1998). Since then, considerable advances have been made in evapo-transpiration pro-
cesses with energy exchanges. Conventionally, ET estimation requires meteorological data 
for model simulations or empirical equations. However, these techniques are not viable to 
effectively estimate ET at a regional scale because of the diversity in land covers or tempo-
ral changes in the landscape (Zhang and Lemeur 1995). The most frequently used method 
for estimating ET at present is the Penman–Monteith equation. The point-based approach 
makes this technique limited to the local scale and therefore is not suitable for large het-
erogeneous areas. There was a need to introduce the RS technique to evaluate ET at local 
and regional scales. Large area coverage with high-resolution imagery in an instantaneous 
view is possible through RS and the data can be utilized to retrieve parameters such as 
radiometric surface temperature, VI and albedo (Choudhury 1989); therefore, RS data are 
more suitable for the estimation of ET using energy balance techniques. The energy bal-
ance concept and net radiation are used as the principal parameters in most remote sensing 
methods used to estimate ET. There are two widely used satellite-based models for ET 
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estimation, SEBAL (Bastiaanssen et al. 1998), which is based on visible and thermal infra-
red spectral radiances of dry and wetland surfaces and the mapping evapotranspiration at 
high resolution with internalized calibration (METRIC) (Allen et al. 2007), which is based 
on short wave and long wave thermal images that provide better accuracy and consistency 
in results. Other remotely sensed ET models include Penman–Monteith, Priestley-Taylor, 
surface temperature and vegetation index space (Zhang et al. 2016). However, the predic-
tive accuracy of these methods depends on the retrieval of vegetation indices and meteoro-
logical variables obtained from remote sensing techniques (Glenn et al. 2010; Verstraeten 
et al. 2008).

In summary, applications of machine learning algorithms to RS data, i.e., spectral bands, 
parameters retrieved through LST, VI and albedo, can greatly contribute to the determina-
tion of plant water stress. Before discussing the application of ML, first, it is essential to 
review the machine learning algorithms widely used in crop water stress assessments.

Overview of widely adopted machine learning algorithms 
in agriculture

Support vector machine

Support vector machine is a statistical learning approach to classify heterogeneous data 
with higher accuracy than traditional statistical classifiers, without assuming a specific data 
distribution. This method is a supervised, non-parametric learner (Pal and Mather 2005) 
that can also be used for regression. The SVM classifier separates the given labelled data 
samples into predefined classes in a multidimensional space (Fig.  1). The SVM learner 
has the intention of achieving the optimal separation hyperplane (OSH), which is a deci-
sion boundary between classes that minimizes classification error in training by having 
the maximum margin and later generalizing to unseen data. The margin is referred to as 
the distance between data samples from classes. The margin of the classifier is maximized 
with the help of support vectors. Support vectors are data points that lie closer to the 

Fig. 1  Support vector machine 
example
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margin, mainly contributing to fitting the hyperplane. Other data points do not contribute 
much to the position and orientation of the hyperplane and hence are discarded. Research 
has shown that remotely sensed data can be accurately classified by an SVM classifier 
(Foody and Mathur 2004a). SVM is basically designed for binary classification but can be 
extended for classification of multiple classes using pair-wise coupling techniques (Kho-
bragade et al. 2015), one-against-all, one against-others, directed acyclic graph (Mountra-
kis et al. 2011) and many other methods suggested by Hsu and Lin (2002) and Melgani and 
Bruzzone (2004).

The classification accuracy of any classifier depends on the number and selection of 
training samples (Khobragade et al. 2015). The collection of ground truth data is a very 
cumbersome and labour and cost-intensive process in remote sensing applications. For that 
reason, the capability of SVM to work successfully on a small number of training samples 
(Foody and Mathur 2004b) without compromising the classification accuracy compared to 
conventional methods makes this method more promising in the remote sensing domain. 
Overfitting in machine learning represents a model that exactly models the training data. 
Overfitting negatively affects model performance as it learns noise in the data. Overfitting 
is also called capacity control or bias-variance trade-off, which is efficiently dealt with by 
an SVM even with small training samples (Mountrakis et al. 2011). Ghoggali et al. (2009) 
combined a genetic algorithm and SVM to classify RS data with limited training samples 
by designating unlabelled samples using a multi-objective genetic optimization framework.

Random forest classifier

Random forest (RF) or random decision forest is an ensemble learner (Breiman 2001) that 
is built by constructing many weak decision trees for classification and regression. RF is 
a non-parametric machine learning algorithm. Bootstrap (training) samples are randomly 
selected from an original dataset to construct multitudinous trees with the replacement 
of samples. There are chances of not selecting any sample at all or selecting any sample 
more than once. The trees are grown in the best possible ways, i.e., pruning is not applied. 
The original dataset is divided into in–bag samples (two-thirds of the original data) for 
training the trees and out-of-bag samples (the remaining one-third of the original data) for 
internal cross validation to estimate the learning process error, which is termed an out-of-
bag error. Each tree is built independently without pruning based on the two user-defined 
(hyper parameters) attributes, forming the forest. The first attribute is the number of trees 
(Ntree) and the other is the number of features used to split each node while creating the 
tree (Mtry). The forest is grown to its maximum size until each node becomes pure. The 
majority vote of predictions of all the trees decides the ensemble’s final decision. To test 
new data, it runs through all the produced trees and each tree votes for a class. The class 
that receives the maximum votes will be the final selected class. Figure 2 depicts the train-
ing and testing phases of the random forest algorithm. One of the best advantages of RF 
is that it is used for both classification and regression. The classifier also produces low 
generalization error (Breiman 2001). As RF is an effective tool for prediction, it does not 
overfit because of the law of large numbers. Randomness lies in bagging and the selec-
tion of random features. Adam et  al. (2017) used RF’s capability to handle interactions 
and non-linearities among other numerical and categorical features. Mtry and Ntree values 
have been well investigated by many studies. Belgiu and Draguct (2016) decided on 500 
as the value for Ntree for two reasons: stabilization of error and the number available in R 
software to train the model. The other Ntree values that were investigated were 5000, 1000 
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and 100 (Belgiu and Druaguct 2016). An other parameter, Mtry, can take any value up to 
the number of variables in the original dataset but is normally assigned as the square root 
of the number of features (Gislason et al. 2006). The curse of dimensionality, also known 
as the Hughes effect or Hughes phenomenon, says that an increase in the dimensions of 
the dataset increases the classification accuracy, but at some point, the accuracy begins to 
decrease due to the limitation of training samples (Alonso et al. 2011). More dimensions 

Fig. 2  Training and testing stages in the random forest algorithm
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may not always necessarily produce good results. The calculation of optimal values for 
training samples and dimensions computed by variable importance together prove to be 
time- and cost-effective solutions with good classification accuracy. Variable importance 
is referred to as the statistical significance of every feature with respect to its contribution 
to the developed model and has achieved great significance, especially in high-dimensional 
datasets.

In RF, using the mean decrease in accuracy (MDA) (Abdel-Rahman et  al. 2014) and 
mean decrease in Gini (MDG) (Breiman 2001; Pedergnana et al. 2013), vegetation impor-
tance is calculated. R software (R Development-Core-Team 2005; Liaw et  al. 2002) is 
found to be a widely used tool to implement RF over Weka, Scikit-learn, MATLAB, etc. 
(Belgiu and Draguct 2016).

eXtreme gradient boosting (XGBoost)

The idea of boosting is enhancing a weak learner to become a better learner. In gradient 
boosting, lower accuracies of produced pruned trees are combined to obtain an accurate 
model (Loggenberg et  al. 2018). Gradient boosting is implemented using the XGBoost 
classifier, which was designed for speed and better performance (Breiman 2001). XGBoost 
(Chen and Guestrin 2016) uses the information provided as feedback from the previously 
grown trees to build further trees and attempts to lower the error in the next iterations.

Rotation forest

Another tree-based ensemble approach is rotation forest, which differs from RF only in 
considering different subsets of features in the training trees (Poona et al. 2016). Feature 
extraction is carried out on a newly created rotated feature space using principal compo-
nent analysis (PCA) (Rodriguez et al. 2006). The final decision is made, which is similar to 
RF. Rotation forest can be implemented in R software, Python and MATLAB.

Oblique random forest

Oblique random forest (Breiman 2001) creates trees using bagging and selects random var-
iables for node splitting. Linear discriminant analysis (LDA), PCA, ridge regression, par-
tial least squares (PLS) and SVM are used to split the node (Poona et al. 2016). Unlike RF, 
oblique RF learns the optimal split direction by using all the selected variables. R software 
can be used to implement oblique RF.

Artificial neural network

Remote sensing generates a very large amount of data and many sensors capture minute 
changes within plants. This type of non-linear problem can be analysed by applying the 
ANN model because of its capability to model a linear and highly non-linear relationship 
between input and output datasets. ANN basically consists of one input layer, one out-
put layer and zero or more hidden layer(s), which are used to solve complex problems, as 
shown in Fig. 3. The ANN model learns itself by selecting appropriate values for weights 
(Samborska et al. 2014). The ANN model has become promising in agriculture for numer-
ous applications, such as modelling thermal information to assess water stress (King and 

Author's personal copy



1138 Precision Agriculture (2020) 21:1121–1155

1 3

Shellie 2016), vegetation mapping (Carpenter et  al. 1999), yield prediction (Jiang et  al. 
2004; Khairunniza-Bejo et al. 2014) and prediction of nitrogen stress (Goel et al. 2003).

Integration of RS and ML for crop water stress detection

Water stress detection using VI

Among the abundant available spectral indices, many indices have been evaluated by 
researchers to assess water stress in different crops. Due to different platforms, spectral 
band combinations, instrumentation and spatial resolutions, it was difficult to reach a math-
ematical formula that expresses all vegetation indices. Hence, the visible (VIS) band for 
vegetation and the non-visible band for vegetation surface-based mathematical formulae 
have been developed according to the applications (Xue and Su 2017). They listed more 
than 100 vegetation indices with their applicability, advantages and disadvantages in their 
review study. Several vegetation indices in the visible spectrum domain found a good cor-
relation with plant water status (Romero et al. 2018) in vineyard management. For grape-
vines, information on VIS and shortwave infrared (SWIR) (Rapaport et  al. 2015), near-
infrared (NIR) and SWIR (Rallo et al. 2014), VIS, green, red edge and NIR (Poccas et al. 
2017) has been suggested to be good indicators of water stress. There are many spectral 
indices that are direct or indirect indicators of water stress. Table 2 presents the EO-based 
indices that have a direct relationship with the water content of crops, whereas Table  3 
includes a list of the numerous indirect indices used as indicators of water status in crops. 
The CWSI was found to be the best indicator, with the WI and NDWI being good direct 
indicators of water status (Fig. 4).

The most commonly used VI is the NDVI, which uses the NIR and red bands of the EM 
spectrum to evaluate the health of the crop. Different studies revealed that NDVI was one 
of the best indirect indicators of water stress in crops (Baluja et al. 2012).

Fig. 3  Layers in an artificial 
neural network
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Figure  5 shows various vegetation indices that indirectly indicate the water status in 
crops that were investigated in different studies. Rahman et al. (2004) used NDVI for the 
identification of sugarcane areas and assessment of crop conditions. Sugarcane leaf water 
content along with various other parameters, such as nitrogen deficiency, pigments, foliar 
nutrients and agronomic parameters, influence the spectral response of the crop. The infra-
red/red ratio from the Landsat TM NIR radiometer, SWIR bands and the digital multispec-
tral video (DMSV) sensor were useful for detecting the water content in sugarcane crops, 
as per the study by Abdel-Rahman and Ahmed (2008). Katsoulas et al. (2016) presented a 
review of crop water stress and nutrient detection through crop reflectance measurement 
approaches and sensors in a greenhouse. They found ground-based sensor data indices to 
be efficient for water stress detection but were influenced by leaf age, leaf thickness, soil 
background, canopy structure, etc. Water stress can be captured by a change in the canopy 
due to a reduction in the photosynthesis process. At the canopy level, VIS, red edge and 
NIR regions have been proven to be the best to detect crop water stress (Berni et al. 2009b). 
With different exposures and slopes, Brunini and Turco (2016) aimed to determine sugar-
cane water stress indices in irrigated areas. They evaluated the daily water stress index and 
soil water potential for sugarcane and found that the water stress index varies according to 
the exposure and the slope. The water stress index derived from infrared thermometry was 
used to determine the ideal time when sugarcane crops needed to be irrigated. They experi-
mented with different growing phases of sugarcane (tillering, growth and maturation) sur-
faces with slopes from 0 to 40% and solar exposures. They noticed that the ideal time for 
irrigation varied with the phases of sugarcane and ranged from 2.0 to 5.0 °C. Bajwa and 
Vories (2006) monitored canopy temperature and reflectance-based VIs, including NDVI, 
green normalized difference vegetation index (GNDVI), stress time index (ST), CWSI and 
canopy temperature-based indices to assess the response of cotton to water stress. Rozen-
stein et al. (2018) estimated cotton water consumption using the crop coefficient (Kc) and 
22 VIs from spectral bands. The NDVI was found to be strongly correlated with Kc and 
water stress (DeTar et al. 2006) for cotton crops. Jackson et al. (1977) combined remotely 

Table 2  EO-based spectral indices indicating direct water stress in plants

(R stands for reflectance)

VI Formula Cultivars R2 References

NDWI
(

R
860

− R
1240

)

∕

(

R
860

+ R
1240

)

Vineyard 0.01–0.99 Zarco-Tejada et al. (2003); Gao (1996)
Grapevines 0.04 Rapaport et al. (2015)

SRWI R
858

∕R
1240

Vineyard 0.7 Zarco-Tejada et al. (2003)
R
680

∕R
1240

Olive groves 0.41 Rallo et al. (2014)
WABI-1

(

R
1490

− R
531

)

∕

(

R
1490

+ R
531

)

Grapevines 0.72 Rapaport et al. (2015)
WABI-2

(

R
1500

− R
538

)

∕

(

R
1500

+ R
538

)

Grapevines 0.89 Rapaport et al. (2015)
WABI-3

(

R
1485

− R
550

)

∕

(

R
1485

+ R
550

)

Grapevines 0.61 Rapaport et al. (2015)
WI R

900
∕R

970
Vineyard 0.95 Zarco-Tejada et al. (2003); Serrano 

et al. (2010)
Grapevines 0.12 Rapaport et al. (2015)

MDWI maxR[1500−1750]−minR[1500−1750]

maxR[1500−1750]+minR[1500−1750]

Grapevines 0.34 Rapaport et al. (2015)

MSI R
1600

∕R
820

Grapevines 0.31 Rapaport et al. (2015)
Olive Groves 0.48 Rallo et al. (2014)
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measured canopy temperature with ground-based air temperature, which became a practi-
cal tool for assessing the water requirements of wheat.

Water stress detection using the CWSI

Crop water deficit or water status monitoring is essential for irrigation scheduling (Xu 
et al. 2018). The CWSI is capable of quantifying crop water stress 24–48 h prior to stress 
detection by visual observation (Kacira et  al. 2002). After Idso et  al. (1981), CWSI has 
successfully been applied to many different plants, such as wheat (Yuan et al. 2004), cot-
ton (O’Shaughnessy and Evett. 2010), maize (Romano et al. 2011), potato (Ramirez et al. 
2016), bean (Erdem et al. 2006), some vegetables (Cremona et al. 2004; Rud et al. 2014) 
and fruits (Paltineanu et al. 2009).

The capability of an empirical CWSI under varying irrigation systems, such as surface 
and sub-surface drip systems, was evaluated by Colak et al. (2015) to determine the effect 
of water stress on the yield and water use efficiency of yield, along with the effects of 
deficient irrigation (DI) and partial root drying (PRD), on the yield and water relations in 
eggplant. Colak et al. (2015) concluded that eggplants should be irrigated at CWSI values 
between 0.18 and 0.20 and parameters of irrigation significantly affecting the yield were 
the growth area, irrigation method, irrigation intervals and irrigation levels. An empirical 
formulation of the CWSI was also utilized by Cohen et al. (2005) in addition to canopy 

Fig. 4  Direct indicators of water 
stress used in studies
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temperature derived from thermal images to predict the leaf water potential (LWP) using a 
regression model in cotton plants under a range of irrigation regimes. Cohen et al. (2005) 
found a good relationship between LWP and CWSI that was stronger than that between 
LWP and canopy temperature. Furthermore, Cohen et al. (2005) focused on developing a 
procedure for water stress mapping that combined the LWP estimation model with spatial 
structure analysis.

The CWSI based on the RS technique is more stable and feasible for irrigation man-
agement (Rud et al. 2014; Bai et al. 2015) at local and regional levels than an empirical 
CWSI. Taghvaeian et al. (2012) developed water-stressed and non-water-stressed baselines 
in a region of Colorado USA for irrigated maize by using infrared thermometry with few 
weather parameters. Furthermore, they estimated a remote sensing-based CWSI, which 
revealed that the data collection time was a key parameter in utilizing the CWSI approach. 
Their major contribution was in identifying irrigation timing and estimating irrigation 
requirements. Veysi et al. (2017) proposed a new procedure to calculate the CWSI from 
satellite data using hot and cold pixels without considering the ground ancillary data for 
irrigation scheduling during the sugarcane growing season (May–September) and they 
found that this procedure outperformed the other two approaches with a good coefficient of 
determination. Veysi et al. (2017) further noticed that VWC was negatively related to the 
CWSI with  R2 values of 0.42–0.78. Eight Landsat 8 satellite images were captured along 
with ground truth data, which were collected using in situ measurements of canopy temper-
ature and VWC to validate the results of the new approach. The CWSI derived from a UAV 
airborne hyperspectral scanner (AHS) and in  situ measurements in olive orchards were 
mapped with spatially distributed canopy conductance by Berni et  al. (2009a). The cor-
relation between field-measured leaf stomatal conductance and AHS imagery was biased in 
the radiometric calibration or atmospheric correction, with an  R2 value of 0.59. They found 
a good relationship between the estimated CWSI from UAV thermal imagery, with LWP 
having an  R2 of 0.82 and canopy conductance having an  R2 of 0.91. Berni et al. (2009a) 
validated the model against ground thermal sensors and used airborne remote sensing ther-
mal imagery, concluding that, for heterogeneous olive orchards, energy balance equations 
and the theoretical formulation of the CWSI can be combined to compute canopy con-
ductance (Gc) and the CWSI, which can be used to obtain actual evapotranspiration and 
schedule irrigation. Moller et al. (2006) worked on CWSI determination for grapevines by 
fusing thermal and visible imagery. Leaf conductance  (gL), stem water potential and leaf 
area index along with meteorological parameters were considered to calculate the CWSI. 
Although excess water supply or water stress negatively impacts crop yield and quality, it is 
useful to have slight to moderate water deficits to ensure optimal quality in the cultivation 
of grapevines. Moller et  al. (2006) aimed to compare a thermal-based CWSI with plant 
water status, test various reference surfaces and determine the relationship between stem 
water potential and stomatal conductance with thermal visible images. Their results con-
cluded that a strong correlation existed between the CWSI and leaf conductance compared 
to the correlation between the CWSI and stem water potential. Hyperspectral, multispectral 
and thermal data were explored to measure nitrogen (N) and water stress in wheat (Tilling 
et  al. 2007). Thermal images were used to quantify water stress for the full canopy and 
the 2D CWSI and vegetation index temperature (VIT) trapezoid method was used for par-
tially covered vegetation fields. Their findings state that irrigated fields are consistently less 
stressed than rain-fed fields.

To date, the CWSI has been assessed using thermal, UAV, hyperspectral and multispec-
tral data and it has been found that the CWSI produces better results than other conven-
tional and RF-based VI methods.
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Water stress detection using ML

Over the past few decades, machine learning techniques have been progressively used in 
diverse applications of remote sensing. Using the GA and ML techniques, a model was 
developed by Hassan-Esfahani et al. (2015) from Landsat images, local weather data and 
field measurements and this model reported field conditions using a soil balance approach. 
This model comprises two modules:

• Water allocation optimization
• Soil water balance model components forecasting

Optimal crop water application rates based on the crop type, sensitivity to water stress 
and growth stage have been identified in the optimization module by employing GA. The 
output of this module is given to the forecasting module, which allocates water across the 
area covered by the centre pivot irrigation system. The model was evaluated on alfalfa and 
oats, resulting in 20% less water use. Sun et al. (2017) designed a crop water stress sys-
tem across two platforms, a multi-core high-performance computing platform (SPARTAN) 
and a cloud platform (NeCTAR), to support parallelism of the analysis of thermal images. 
These thermal images were captured by UAV and underwent the process of first detecting 
edges, then building a Gaussian mixture model for each crop species and finally calculating 
the water stress index according to the mean value from the Gaussian model.

Other well-known ML techniques, SVM and RF, are regularly considered classical data-
driven techniques and are popular in many remote sensing applications, mainly includ-
ing crop classification (Yang et al. 2011; Saini and Ghosh 2018) regression (Kaheil et al. 
2008) and LULC mapping (Warner and Nerry 2009; Huang et al. 2008). The popularity of 
SVM is due to its several promising characteristics, such as the kernel trick and structural 
risk minimization principle (Vapnik 1999). The selection of the kernel trick influences 
the generalization ability of SVM in many remote sensing applications (Mountrakis et al., 
2011). The popularity of RF is because of its ability to address data overfitting. Neverthe-
less, very few studies have been carried out on the applicability of SVM and RF in deter-
mining crop water stress. For instance, Poccas et  al. (2017) selected three hyperspectral 
reflectance vegetation indices (NIR, WI and D1) and the day of the year predictors for 
the inclusion in RF and SVM predictive machine learning models to model predawn leaf 
water potential for assessing water stress in grapevines. Moshou et  al. (2014) attempted 
to discriminate healthy and water-stressed wheat canopies grown in a greenhouse envi-
ronment. They made use of a spectrograph and a fluorimeter for their study, but remote 
or vehicle-mounted sensing could also be used. They developed a hybrid classification 
technique with a multisensory fusion system and least squares support vector machine 
(LSSVM), which was able to detect and discriminate between two stress factors, namely 
the onset of Septoria tritici disease and water stress in winter wheat. LSSVM displayed 
99% performance in their investigation. AlSuwaidi et  al. (2018) designed an innova-
tive classification framework to analyse hyperspectral data to detect plant diseases, crop 
stress conditions and crop type classification. Their framework comprised spectral profile 
extraction, significant wavelength selection, novelty detection classifier construction and 
ensemble learning. Leaf pixel values were considered to provide spectral profiles. ReliefF, 
chi-square, Gini index, information gain, fast correlation-based filter (FCBF) and correla-
tion feature selection (CFS) algorithms were employed for optimal feature selection. Nov-
elty scores using novelty detection (ND) SVM were used to detect novelty and the final 
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decision was made using ensemble majority voting. Loggenberg et  al. (2018) combined 
terrestrial hyperspectral remote sensing with machine learning to model water stress in 
vineyards. They applied RF and XGBoost to discriminate stressed and non-stressed Shiraz 
vines. They compared the results with in-field stem water potential. Moreover, the utility of 
the spectral subset of wavebands derived using the gains from RF MDA and XGBoost was 
evaluated. Key parameters of XGBoost were established as follows: max_depth = 6, sub-
sample = 1, eta = 0.3, nrounds = 100–1000, gamma = 0, min_child_weight = 1 and colsam-
ple_bytree = 1. Loggenberg et al. (2018) expressed their willingness to further investigate 
the development of the framework’s robustness and operational capabilities. The achieved 
results were quite noticeable; for all wavebands (p = 176), the RF test accuracy was 83.3% 
(KHAT = 0.67) and the XGBoost test accuracy was 78.3% (KHAT = 0.6). For the subset of 
wavebands (p = 18), the RF test accuracy was 83.3% (KHAT = 0.67) and the XGBoost test 
accuracy was 80.0% (KHAT = 0.6). However, RF and SVM algorithms are rarely applied 
for determining water status, unlike ANN. ANN is a widely utilized ML technique in water 
stress detection and other studies in agriculture and is good at tackling agricultural issues 
where deterministic models are inaccessible. Romero et  al. (2018) observed aerial mul-
tispectral imagery for various vegetation indices, such as the difference vegetation index 
(DVI), green index (GI), MSAVI, NDVI, NDGI, NDRE, OSAVI, red green ratio index 
(RGRI), renormalized difference vegetation index (RDVI) and simple ratio index (SRI). 
These indices have been applied as inputs to the model. Then, correlations between midday 
stem water potential (Ψstem) and VIs were estimated and evaluated using statistical methods 
and machine learning algorithms for vineyard studies. The research focused on the build-
ing of two models. The first model was built using ANN with (Ψstem) and VIs and showed 
high correlation between water potential, which was estimated through ANN and Ψstem 
measured by in situ measurements. Another model was a pattern recognition ANN model 
for irrigation scheduling with Ψstem as the input, providing severe, moderate and no water 
stress as outputs. They measured Ψstem using two Scholander pressure bomb techniques 
for ground truth data on ninety vine plots, which was further applied to other twenty-three 
plots, which revealed high correlation values between the Ψstem modelled with ANN and 
observed Ψstem. The use of plant water stress characterized by water potential to sched-
ule irrigation in vineyards, nut trees and almond trees was investigated by Poblete et  al. 
(2017). They built an artificial neural network model to predict the spatial variability in 
Ψstem in a drip-irrigated Carmenere vineyard in Talca, Maule region, Chile. They worked 
on UAV multispectral imagery and fed bands as inputs to ANN. The stem water poten-
tial measured using a pressure chamber was used to validate the results. The coefficient of 
determination between ANN outputs and ground truth measurements of Ψstem was obtained 
in the range of 0.56 to 0.87. They found the best performance for the bands 550, 570, 670, 
700 and 800 nm. Their results showed that the Ψstem estimated using the ANN model had 
a mean absolute error (MAE) of 0.1 MPa, root mean square error (RMSE) of 0.12 MPa 
and relative error (RE) of −9.1%, drawing the conclusion that ANN performed well to 
estimate Ψstem. Another water stress indicator based on plant response, the relative water 
content (RWC), was also predicted under the water deficit stress status of rice genotypes by 
Krishna et al. (2019) through spectral indices, multivariate techniques and neural network 
techniques. Krishna et  al. (2019) utilized existing water band indices and proposed new 
water band indices, namely ratio index (RI) and normalized difference ratio index (NDRI) 
for the prediction of the RWC. From Fig.  6, it is observed that ANN is heavily utilized 
for the determination of water stress and in other areas of agriculture as well. ML is also 
increasingly used to estimate hydrological and renewable energy variables. To gauge refer-
ence ET and evaporation, a number of studies have recommended that machine learning 
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methods can give preferable estimates over experimental conditions depending on various 
driving meteorological variables.

However, much consideration has been paid to the estimation of ET in earthbound bio-
logical systems utilizing machine learning modelling approaches, alluding mostly to ANN 
and SVM (Dou and Yang 2018). ANN and SVM were developed to simulate and predict 
daily ET by Dou and Yang (2018) with the extreme learning machine (ELM) and adaptive 
neuro-fuzzy inference system (ANFIS) algorithms. These are two state-of-the-art machine 
learning algorithms that have been extensively used in hydrological time series modelling 
and forecasting (Gocic et  al. 2016; Alizadeh et  al. 2017). Dou and Yang (2018) investi-
gated the feasibility and effectiveness of using ELM and ANFIS to model and estimate 
daily ET with flux tower observations in different types of ecosystems. They found that 
these approaches provided a novel perspective for scaling up ET from the ecosystem to a 
regional or global scale with remote sensing data.

Exceptionally constrained research was conducted on improving the CWSI with the uti-
lization of ML algorithms. For example, a 1-km resolution monthly mean  Ta dataset over 
the Tibetan Plateau was developed by Xu et al. (2018) using remote sensing, ML and aux-
iliary data, as they faced the issue of limited  Ta observations due to an uneven distribution 
of stations and low density. Eleven environmental variables were extracted from MODIS, 
topographic index data and shuttle radar topography mission (SRTM) digital elevation 
model (DEM) data. Using these variables, an optimal model was built for  Ta estimation 
with the contribution of ten ML algorithms, namely, Bayesian regularized neural network 
(BRNN), SVM with radial basis function (RBF) kernel, least absolute shrinkage and selec-
tion operator (LASSO), ridge regression, generalized linear model (GLM), multivariate 
adaptive regression splines (MARS), conditional inference tree (CIT), RF, eXtreme gradi-
ent boosting and cubist, among which the cubist algorithm was found to be the best model 
with the lowest precision error. This was the first attempt to develop a spatio-temporally 
resolved monthly  Ta dataset over the region using RS and ML. Although this dataset is use-
ful for climate change and environmental studies,  Ta estimation by ML methods is helpful 
in improving CWSI calculations. Canopy temperature is another parameter in CWSI calcu-
lations that relies upon environmental conditions and plant reactions. A study by Andrade 
et al. (2018) endeavoured to forecast canopy temperature acquired by a remote system of 
IRTs mounted on three-range variable rate irrigation centre pivot systems for irrigated corn 
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Fig. 6  Use of ANN in different studies
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crops. This system of IRTs is an irrigation scheduling supervisory control and data acquisi-
tion system (ISSCADAS) that gathered information from climate detecting frameworks, 
soil and plants and provided it to computerized irrigation scheduling algorithms, which 
dealt with the generation of site-specific plant water stress prescription maps. The expan-
sion of ML capabilities in the ISSCADAS would help clients when poor perceivability 
conditions prevent the accurate estimation of canopy temperatures. Other parameters of 
CWSI, including the upper baseline and lower baseline, are crop-specific and vary with 
crop cultivation regions. Regions with dry climate have different upper and lower stress 
and non-stress temperature thresholds than those in normal condition regions. Only a few 
research studies have been carried out to date that have investigated the role of state-of-the-
art machine learning techniques to estimate the upper and lower stress and well-watered 
threshold of temperature required by CWSI calculations. Therefore, there is much scope 
for ML algorithms in estimating these parameters. There is also an interesting direction 
towards improving these parameters using machine learning that can also account for plant 
response and environmental conditions.

Figure 7 presents a summary of the work done for the determination of crop water stress 
in different crops using different RS and ML methods.

Future directions

The future of farming depends largely on the adoption of cutting-edge technology such as 
ML, RS, geographical information system (GIS), UAV and cloud computing capabilities. 
However, these technologies are yet to make a dent in the agriculture sector in India. Fast 
degrading land, water resources and climate change effects make it necessary to use mod-
ern technologies to overcome these problems and achieve rational and efficient water use 
during crop cultivation. These technologies include real-time data analysis and real-time 
detection of plant water stress using advanced techniques. There is a strong correlation 
between plant water stress and water productivity (WP), which provides an opportunity to 
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study the causes of the differences in water use to produce a unit of a specific crop using 
ML to pin-point areas where these differences occur and strategize approaches for increas-
ing water productivity. Several studies have indicated that it will be highly significant to 
address plant water stress using machine learning, which will help farmers improve water 
and cropland management practices in the low WP areas, which will substantially enhance 
the food security of the expanding population without having to increase (a) crop sowing 
areas and (b) irrigation water allocations. Another important limitation is the high cost of 
different cognitive solutions available in the farming market. The solutions need to become 
more affordable to ensure that technology reaches masses. An open-source platform would 
make the solutions more affordable, resulting in rapid adoption and increased understand-
ing among farmers.

Another problem in implementing ML algorithms is the requirement of high computa-
tional power. Advances in ML algorithms that reduce computational time for processing 
the data will significantly improve the use of ML in remote sensing.

Conclusions

Conventional techniques such as soil moisture measurement techniques have limitations 
in terms of sensor costs, their installations and trouble in acquiring estimations, particu-
larly for heterogeneous crops and soil. These techniques provide point information and 
therefore inaccurately represent large fields. Plant-based estimations are reliable and more 
accurate but are not sophisticated and require a great deal of time. As seen in the litera-
ture, critical connections exist between remotely sensed features such as PRI and NDVI 
with LWP, stomatal conductance, crop coefficient and stem water potential. However, this 
kind of accuracy is insufficient to permit the utilization of single parameter measurements 
for the estimation of plant water status. Many researchers have investigated the capabil-
ity of using the CWSI for different crops. EO-based CWSI was suggested to be the best 
indicator of water stress in agricultural crops, in contrast with other VIs and WIs at local 
and regional scales. Furthermore, studies discovered an infrared thermometer that could be 
used to estimate canopy temperature, which was reasonable to identify crop water stress 
and has moved towards becoming a benchmark technique for ground truth information. 
Among many other in situ measurements, such as LWP and canopy temperature, midday 
stem water potential is the most utilized technique to validate the outcomes acquired from 
remotely detecting systems.

The remarkable results of ML on the agricultural sector enhance the existing RS tech-
niques, especially when ML is combined with RS data. A powerful ML technique, ANN, 
provides an effective tool to mine UAV multispectral data and assesses the contribution of 
each feature to the target. Non-influencing indices are adjusted by the weights of the ANN. 
Two other ML classifiers, SVM and RF, were shown to be powerful for the classification 
and prediction of RS data; however, they were not explored to their fullest potential in 
crop water stress determination using remote sensing data. Original RF classifiers were 
improved with oblique and rotation RF classification. Oblique RF method worked well 
on different datasets with discrete factorial features. The first application of oblique RF 
in remote sensing was implemented for multiclass land cover and land use mapping using 
World View 2 images. Oblique RF was also employed for the classification of symptomatic 
stress in Pinus radiata seedlings. This variant of RF could be evaluated for crop water 
determination. This assertion needs to be further investigated. Another novel approach to 
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improve the RF classifier for remote sensing is the rotation RF that concatenates different 
rotation feature spaces into a higher space at the training stage. Studies have reported the 
superior performance of rotation RF in classification over RF, SVM and k-NN techniques. 
To date, rotation RF has not been evaluated for water stress determination using remote 
sensing data.

Machine learning has the capability of organizing data from systematic ground obser-
vations, ground sensors, meteorological and remote sensing (satellites, airborne, drone) 
sources. The availability of these data and other related data is paving the way for the 
deployment of ML in agriculture. To date, ML techniques have been used for identifica-
tion, yield prediction and crop condition determination, but crop water stress assessments 
are essential for irrigation management and therefore require attention from the research 
community.
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