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The ubiquitous deep learning (DL) in remote sensing (RS) motivates the most challenging problem of crop
classification. To perpetrate such an exigent task, an attempt is made to prepare a novel dataset, the
CaneSat dataset, in two formats: RGB color space and geo-tiff images, covering the region of four talukas
in Karnataka, India. This research aims to build a model for sugarcane classification using two-
dimensional convolutional neural network (CNN or ConvNet) applying RS time series data. Further, the
study intents to evaluate competency of four state-of-the-art deep CNNs namely AlexNet, GoogLeNet,
ResNet50 and DenseNet201 using fine tuning and deep CNNs as feature extractors to classify sugarcane
and non-sugarcane areas from Sentinel-2 data. The results of the research are expressive on CaneSat data-
set. It shows that the CNN model performs significantly good producing 88.46% accuracy, whereas all
deep networks exhibit more than 73.00% overall accuracy. When used as feature extractors, ResNet50
and DenseNet201 outperform all other models with precision of 85.65% and 87.70%, respectively.
Noticeably, the results indicate that 2D CNNmodel and features extracted using CNNs with SVM classifier
are efficient methods for sugarcane classification from Sentinel-2 time series data in peninsular zone of
India.
� 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Agriculture accounts for over 50% of Indian population liveli-
hood and is backbone of the Indian economy and food system.
Sugarcane is a cash crop of India and sugar mills wants to know
the cane availability, so that they can plan their harvesting sched-
ule. Field assistants are assigned this job to get the information of
cane availability which eventually leads to human error and mills
shortfall in crushing every year. Sugarcane classification at every
stage would not only help mills but also the farmers who are hold-
ing significantly large area to manage their farm. Earth observation
(EO) becomes powerful technology to achieve this challenging
task. EO provides continuous, autonomous, high quality dataset
with a global coverage of earth observation. With open access to
such a huge amount of satellite data, abundant applications in
the domains of agriculture (Virnodkar et al., 2019a, 2020) and
urban development (Ponti et al., 2016) have successfully been real-
ized. The high temporal revisit period becomes a powerful source
for time series datasets that can be useful for monitoring geograph-
ical area and vegetation dynamics (Zheng et al., 2020) through
time. How to analyze and utilize this time series to leverage the
seasonal characteristics of vegetations varying with time and sea-
son is still an unfastened issue in the RS research field. Notwith-
standing the usefulness of the time series, the traditional
approach is to execute futuristic ML techniques like SVM and RF
on stacked satellite images (Yang et al., 2011). Time series data
exhibits temporal correlations which are failed to model by these
traditional approaches, as they extract the features autonomously
from one another regardless of temporal dependencies.

Recently, DL technology have achieved astonishing perfor-
mance in crop and land use land cover (LULC) classification from
RS time series images, in particular; the CNN and the long short-
term memory (LSTM) which is a gated recurrent unit of recurrent
neural network (RNN). Prior to the development of DL, the RS
e clas-
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community have focused on the employment of SVM and ensem-
ble classifiers for various RS applications in particular crop classifi-
cation (Belgiu and Csillik, 2018; Virnodkar et al., 2019b) from the
use of a neural network (Atkinson and Tatnall, 1997) which was
the basis of DL algorithms (Ma et al., 2019). In this research, an
attempt is made to classify sugarcane and non– sugarcane using
CNN from Sentinel-2 time series data in the region of Mudhol, Jam-
khandi, Raibag and Gokak talukas of Karnataka, India. It is a 6 lay-
ers network and achieves an accuracy of 88.46%. To leverage the
pre-trained DL models, we have also evaluated four models in this
study for the target dataset of sugarcane.

In this paper, following contributions are presented

1. A dataset (’CaneSat’), containing total of 1627 sugarcane and
non-sugarcane images, is created. The dataset is in two formats:
one contains geo-tiff images with six features and another
having jpg images in RGB colour space. Geo-tiff images are
geo-referenced and labeled, however, jpg images are not geo-
referenced.

2. A model using DL is proposed on the created dataset to learn
spatial features from RS time series data for classification.

3. Comparative performance evaluation of AlexNet, GoogLeNet,
ResNet50 and DenseNet201 models’ transfer learning has been
carried out on the created ‘CaneSat’ dataset.

4. RF and SVM ML techniques have also been tested to compare
CNNs’ performances.

1.1. Related work

The advancement of DL in the field of RS increases with the con-
tinuous generation of a huge data by satellites. Nonetheless, big
labeled data in RS is rare and is a very time consuming and labour
and cost intensive process, however, is an essential requirement
for DL frameworks. Since 2010, many researchers put their efforts
and produced small as well as large scale RS labeled datasets. The
most studied and sought-after dataset is the UC Merced (UCM)
dataset created from aerial images by Yang and Newsam (2010)
for land use classification. Novel datasets generated from the Goo-
gle earth images having high SR are NWPU-RESISC45 (Cheng et al.,
2017) and PatternNet (Zhou et al., 2018). Dataset for object detec-
tion in aerial images (DOTA) (Xia et al., 2018) and aerial image
dataset (AID) (Xia et al., 2017) are two large scale datasets aid
research in RS domain. Many other RS datasets include the Brazil-
lian coffee scene (BCS) dataset (Penatti et al., 2015), the SAT-4 and
the SAT-6 (Basu et al., 2015), the RS19 (Nogueira et al., 2017) and
the EuroSat (Helber et al., 2019).

Several research studies gained significant results on the avail-
able hyper-spectral and multispectral RS datasets (Ienco et al.,
2017; Interdonato et al., 2019), by training new CNNs from scratch.
Another technique, fine tuning in transfer learning freezes initial
layers and adjust parameters of the last layers according to the tar-
get dataset. Many studies reported state-of-the-art results of fine
tuning on different RS datasets (Penatti et al., 2015; Mahdianpari
et al., 2018). The pre-trained CNNs performed well as feature
extractors (FE) to extract deep features from images (Castelluccio
et al., 2015, Hu et al., 2015).

From the literature survey, it is observed that various datasets
like UCM, BCD, NWPU- RESISC45, EuroSat, SAT-4, SAT-6, etc. are
openly available, however, a few of them are not publicly available
and none of them cover Indian geography. Most of the datasets are
used for LULC and crop land mapping which contains sugarcane
crop as one of the class.

However, due to environmental variability, every geographical
location has shown to influence crop canopy structure, crop class,
foliar chemistry which can change the satellite imagery reflectance
value. Hence, there was a need to create a dataset to perform
2

sugarcane classification in the study area located in India. In the
rest of the paper, materials and methods are explained in Section 2;
results are presented and discussed in Section 3 and finally con-
cluded the paper in Section 4.
2. Materials and methods

The research study area as depicted in Fig. 1 spreads across four
talukas, namely, Mudhol, Jamkhandi, Raibag and Gokak covering 8
lack acres of land in Karnataka, India at 16.38980� N and 75.03710�
E. The area has an altitude of 541 m above sea level with annual
precipitation is around 545 mm. The climate is generally dry and
the temperature ranges between 16.20 �C and 38.70 �C. Sugarcane
is the main crop cultivated in this region. Sugarcane is a semi-
perennial and one of the most prime crops across the world,
especially in India, Brazil and China. Brazil ranked first in sugar
production and second in ethanol production. There are three
plantation seasons in south India like early (Jan – Feb), mid-late
(Oct – Nov) and late (Jul – Aug). It undergoes four growing phases,
namely, germination phase, tillering phase, grand growth phase
and maturity phase in south and north India.
2.1. Formation of the CaneSat dataset

Abundant applications of agriculture at a large scale can be
enhanced with the use of freely available RS data mainly crop clas-
sification; motivates the formation of the proposed dataset. All
satellite images utilized in this study are cloud free and down-
loaded from ESA’s Copernicus program website (home). In the RS
context preprocessing of the images are required in order to
remove atmospheric effect, radiometric noise and geometric
errors. This preprocessing normalizes the data. The available
Sentinel-2 data is geometrically and radiometrically corrected.
However, all the images have undergone atmospheric correction
as the normalization step which was performed through SCP plu-
gin tool in GIS 2.18. Eight images acquired during Oct 2018 to
May 2019 are utilized to generate the dataset. The aspiration
behind covering four talukas for preparing dataset is to train the
network with the high variance intrinsic to the satellite images
due to data capturing, pre-processing and other parameters affect-
ing the sugarcane crop growth, like irrigation type, crop type, crop
variety, soil texture, soil moisture, soil type, climate, precipitation,
temperature and humidity. The sugarcane raising at different talu-
kas varies little bit in their reflectance captured by the remotely
sensed images due to the above-mentioned parameters. Hence,
phenology of sugarcane from different talukas is covered in the
CaneSat dataset. The parameters considered in collecting sugar-
cane samples is given in Table 1.

The CaneSat dataset formation process is depicted in Fig. 2.
There are two classes in the dataset, one is sugarcane, comprises
all growing phases and the non-sugarcane class consists of all
other land covers existing in the study area. It includes maize,
built-up, residential, industrial building, water body, pastures,
rocks and fallow land. Different contextual window sizes of
28 � 28, 64 � 64 and 256 � 256 have been employed in the various
studies to create the land use land cover dataset from the satellite
images. However, in our study area, most of the farmers own small
land (~1 acre or 0.404 ha) for agriculture or cultivate different
crops adjacent to each resulting in a small patch of images in the
dataset. The geo-referenced image patches of 10x10 pixels are
clipped from the Sentinel-2 A/B satellites with each pixel of 10 m
resolution. Ground truth data is a geographical information system
(GIS) shape files collected through fields’ survey conducted during
October 2018 to May 2019. Ground truth data has been recorded
by the global positioning system (GPS) device (Montana 680) for



Table 1
Parameters of collected sugarcane samples.

Fig. 1. The study area.
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sugarcane and maize crops. Besides, samples of all other objects in
the non-sugarcane class were generated through a visual interpre-
tation based on experts’ knowledge. All vector files of 10 � 10 are
precisely drawn to assure geometry of the image patches as shown
in Fig. 3.

Then, all GIS shape files are converted into raster files giving an
image patch of 10 � 10 pixels. Altogether, the complete ground
truth data contains 1627 samples having 162,700 pixels covering
an area of 16.27 ha. Out of which 87,000 pixels are for sugarcane
class and remaining 75,700 pixels for non-sugarcane class. The
main contribution of this research study is that the dataset is
emancipates in two formats i.e. jpg format in RGB colour space
and tif format of geo-referenced images (Fig. 4), aiming to acceler-
ate the use of machine learning in crop classification task using
openly accessible RS data. The tif format is composed of six spectral
bands such as Red, Green, Blue, Near Infrared (NIR), Red edge,
Short-Wave Infrared (SWIR). In total, six features are examined
for every pixel in every image of the time series of eight images.
The CaneSat dataset is publicly available at ‘https://ieee-dataport.
org/documents/canesat’.
3

2.2. Convolutional neural networks

DL models learn features from the images automatically,
unlike the state-of-the-art ML methods. In the last few years,
DL is in vogue among researchers for processing RS data. Among
all the DL models, CNNs are becoming increasingly ubiquitous by
the reason of their remarkable results (Krizhevsky et al., 2012) in
many domains including RS (Yan et al., 2019; Nogueira et al.,
2015). This is because of the image’s stationary property which
states that contents retrieved from one part of an image can also
be applied to other part of the image (Nogueira et al., 2015). CNN
architecture comprises many layers, namely, convolutional layers
(comprises processing units, i.e., neurons), sub-sampling layers
and fully connected (FC) layers with nonlinear transformations,
refers to the deep architecture. The convolutional layer acts as a
function to extract features from previous layers of the network,
generates feature maps as an output of every layer. The feature
map values depend on the structure of the kernel which defines
what information is to be extracted from the layers. The kernel
comes in a matrix and is responsive to the spatial information
of an image. Features are extracted at different levels as low,
mid and high level from initial, middle and final layers, respec-
tively. Initial layers are responsible for extracting more generic
features like color blob, corners and edges which are not applica-
tion oriented. Final layers are more specific to the application,
extract the objects or image structures and therefore, need to
be trained according to the application and target dataset. Gener-
ally, but not necessarily, each convolutional layer is followed by a
sub-sampling layer. The sub-sampling layer, also called as pooling
layer, is mainly implemented to reduce size of the image data and
the variance of features extracted from the convolutional layer
with the retention of the geometry of the input data (Rezaee
et al., 2018). A fixed-size grid runs over the image feature map
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Fig. 2. CaneSat dataset formation process.
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with a stride and implements max (or average) operation which
gives maximum (or mean). The sub-sampling layers select the
most important, robust and abstract features (Mahdianpari
et al., 2018) for the following layers which aid in lowering the
computational difficulty in the network training. Over many suc-
ceeding convolutional and pooling layers, FC layers exist till the
classifier in the network architecture. There could be more than
one FC layers, however, the last FC layer connects all processing
units of the previous layer to its every single processing unit
and concludes the output to the classifier layer. Lastly, the classi-
fier layer is employed which computes the posterior probability
of each class instance. A softmax function is a widely used classi-
fier layer, also known as a normalized exponential, represents
categorical probability distribution to predict the probability of
the sample class (Nogueira et al., 2017). In addition to all layers,
normalization layers, local response normalization (LRN) and
batch normalization are generally used with unbounded activa-
tions such as rectified linear unit (ReLU) to detect high frequency
features. The CNN was anteceded way back in the 1980s with the
design of a primary CNN, LeNet, by LeCun et al. (1998) for hand-
written digits classification. However, it was progressively
employed in many domains since 2010. Thanks to the develop-
ment of GPUs and larger datasets like ImageNet (Deng et al.,
2009), Cifar (Krizhevsky, 2009) those contributing in advancing
the network design. A quantum leap in the development of deep
CNN was by Krizhevsky et al. (2012) with the design of AlexNet
which becomes a foundation to modern deeper feature learning
CNNs. Thereafter, since 2014 further manoeuvre has successfully
been achieved with the evolvement of CaffeNet (Jia et al., 2014)
inherited from AlexNet, VGG (Simonyan and Zisserman, 2014)
and its variants, GoogLeNet (i.e., Inception network) (Szegedy
et al., 2015), ResNet (He et al., 2016) and DenseNet (Huang
et al., 2017).
4

2.2.1. Alexnet
AlexNet (Krizhevsky et al., 2012), secured first place in the Ima-

geNet large scale visual recognition challenge (ILSVRC) held in
2012, for object detection. This network includes a total of eight
hidden layers having five convolutional layers with three max
pooling layers and three FC layers. The nonlinearity was added
by ReLU function and LR normalization was implemented after
first and second convolutional layers. The endmost FC layer is suc-
ceeded by a softmax activation layer. AlexNet was successful by
dint of the realization of GPUs for convolution operations, use of
dropout to overcome overfitting problem at FC layers, non-
saturating neurons and more training samples. In addition to this,
it requires fewer parameters, i.e., 60 million and 650,000 neurons
which reduces network training time.
2.2.2. GoogLeNet
GoogLeNet was developed by (Szegedy et al., 2015), a deeper

convolutional network also codenamed Inception-v1, won first
place in the ILSVRC 2014 image classification contest with lower
error rate compared to the VGGNet. GoogLeNet has total of 22 lay-
ers (plus five pooling layers) comprises 1� 1 convolutional layer as
the first layer, nine inception modules realizing network in net-
work approach, softmax as auxiliary classifiers used for training
only and a global average pooling layer at the end instead of FC
layer. This CNN is advantageous over previous CNNs because of i)
1 � 1 convolutional layer lessens the model, ii) different convolu-
tional types along with different max pooling for same input to
retrieve more spatial details, ii) efficiently handled overfitting
problem by turning down the number of parameters used in the
network and employment of global average pooling layer iv) aux-
iliary classifiers hinders vanishing gradient problem in the net-
work’s deeper approach and provides regularization as well.



Fig. 3. Image samples bounding boxes of sugarcane class and land cover class.
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2.2.3. ResNet50
ResNet, a residual neural network (He et al., 2016) was winner

of the ILSVLC 2015 competition with 3.57% top-5 error rate.
ResNet also secured 1st place in ILSVRC and COCO 2015 competi-
tion in ImageNet localization, ImageNet detection, Coco segmenta-
tion and Coco detection (He and Sun, 2015. In addition to the
difficulty in training deep networks, they all were suffered from
the major problem of vanishing gradient which makes learning
infinitesimal as it is back propagated in the initial layers. Prior to
ResNet, few deep architectures tried to get rid of vanishing gradi-
ent problem. However, ResNet succeeded by introducing skip con-
nections which skips one or more layers in the network, a
technique that was also used by (Srivastava et al., 2014). The resid-
ual block was refined (He et al., 2016) and a pre-activation residual
block with identity transformation was employed (He et al., 2016)
wherein the gradients jump to shortcut connections to reach to
any other previous layer. By reason of this, ResNet becomes more
popular in research community and they came up with many vari-
ants of it, namely, ResNet-18, ResNet-34, ResNet-50, ResNet-101,
ResNet-110, ResNet-152, ResNet-164 and ResNet-1202, ResNeXt.
5

In our study Resnet50 is used because of its ability to work well
on RS data. ResNet50 is 50 layers deep in nature consisting of 5
phases of convolutional layers. Firstly, 7 � 7 convolution with
stride two is employed which is succeeded by the pooling layers
and then three identity blocks. The last layer is the average pooling
layer generating thousand feature maps.

2.2.4. DenseNet201
Dense Convolutional network, DenseNet, was jointly designed

by Tsinghua university, Cornwell university and Facebook AI
research (FAIR) (Huang et al., 2017). As compared to ResNet and
pre-activation ResNet, DenseNet achieved higher accuracy with
a smaller number of parameters as a result of dense connectivity.
In DenseNet, firstly the input image is convolved with 16 output
channels and given to the dense block. In each dense block, all
layers are directly connected to every other layer in the block
in a feed forward manner. Each layer gathers knowledge from
all precursory layers and gives its own output to all following lay-
ers. At every layer all the feature maps collected from previous
layers are considered separately, concatenated in a single tensor



Fig. 4. Example zoomed images of CaneSat dataset in (a) jpeg (b) tif formats.
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(Huang et al., 2017) given as an input to the composite function.
The composite function constitutes three operations, batch nor-
malization (BN), ReLU and 3 � 3 convolutions. All densely con-
nected dense blocks are joined through transition layers which
performs convolution and pooling. Transition layer is made up
of a batch normalization layer followed by a 1 � 1 convolutional
layer succeeded by a 2 � 2 average pooling layer. Another layer
introduced prior to every 3 � 3 convolutional layer in DenseNet
is a bottleneck layer, codenamed DenseNet-B, which is designed
as BN, ReLU and 1 � 1 convolution layer followed by BN, ReLU
and 3 � 3 convolution layer. DenseNet sets the hyper-
parameter, referred to as growth rate that defines the amount
of new input at each layer, relatively small as each layer in the
network has entire network’s information. Final dense block is
connected to a global average pooling layer and finally a softmax
classifier is connected. DenseNet201 is evaluated in this work due
to their good performance on remotely sensed data for classifica-
tion task.

All the above mentioned and other existing deep CNNs can be
employed in three different strategies, namely, full training, fine
tuning and CNN as FE which are briefly discussed below:
2.2.5. Full training
Full training refers to train a ConvNet right from scratch by

assigning random values to kernel weights and is one of the best
modalities to get network tuned precisely for a specific dataset.
Though it creates accurate features specific to the target dataset
and full control on network parameters, it necessitates a large
dataset to converge the network which demands huge computa-
tional cost, recourses (Bengio et al., 2009) and faces overfitting
problem. In full training, we can either utilize the existing network
configuration with randomly initialization of its weights or can
model a new network architecture by setting all its components,
namely, number of processing units, convolutional layers, pooling
layers, FC layers, activation functions, number of epochs, learning
rate, weight decay, type of normalization and regularization
techniques.
6

2.2.6. Fine tuning
Fine tuning is a concept, where information acquired by a net-

work model through training process on a task is utilized to train
the model to perform another analogous task. It relies on a prop-
erty of learning low-level features that resemble color blob or edge
detectors, Gabor filters and mainly it is independent on the train-
ing dataset. Later layers extract features which are specific to the
problem. This makes it more suitable option when the training
dataset is large enough but insufficient to train a network from
scratch (Nogueira et al., 2017). We employed fine tuning on the
CaneSat dataset in this study.

2.2.7. Feature extractors
Encoding perspicacious features from visual data is one of the

major phases in computer vision tasks, RS being no exception for
this. Due to particularities in RS data, many of the long-
established methods like color histograms, correlograms (Kumar
and Bhatia, 2014), BoVW (Tsai, 2012) are not simply applied in
RS domain and hence, it is still an open research problem
(Nogueira et al., 2015). CNNs can be used as arbitrary FE in DL
framework wherein training images are propagated through the
layers of the pre-trained network and taken output after any pre-
defined layer as deep features. These features can then be provided
to any other linear classifiers to perform classification task. Deep
features trained on ImageNet produced astounding results in many
visual recognition tasks confirms the extracted deep features will
work well for dataset of interest other than the ImageNet dataset.
Accordingly, we utilized the above discussed four pre-trainedmod-
els as FE in our present study.

As observed from literature, deep CNNs reveal superiority in
performance over other traditional machine learning approaches
in land use, land cover and crop classification. Therefore, we use
DL models for the classification of sugarcane.

2.3. Methodology

The focus of this work is to develop a CNNmodel to classify sug-
arcane crops from other land covers on the created CaneSat dataset
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and to investigate the power of the four selected pre-trained CNNs
on the target CaneSat dataset. The selected pre-trained convolu-
tional networks’ performances were evaluated by employing two
modalities i.e., fine tuning the layer before classification and CNNs
as FE. All the experiments for 2D CNNmodel were carried out on an
Intel(R) Xeon(R) CPU E3-1271 v3 @3.60 GHz with 32 GB RAM. A
64-bit 7th generation Intel core i7 processor with 2.80 GHz operat-
ing speed was used for the deep networks’ training and experimen-
tational evaluation. The quantitative evaluation of various models
used in this study is performed using overall accuracy as metric
that is derived from the confusion matrix. The overall accuracy is
calculated as the percentage of accurately classified classes of the
test dataset. Class level accuracy is evaluated by F1 score which
gives harmonic mean of precision and recall. Precision is defined
as correctly predicted classes divided by the total number of
classes predicted by the model. The recall is the proportion of cor-
rectly predicted classes to actual classes.

2.3.1. Architecture of the proposed 2D CNN model
Six bands from Sentinel-2 imagery forms feature vectors are

given as the input to the 2D convolutional neural network trained
on the CaneSat dataset. The architecture of this 2D CNN model is
shown in Fig. 5.

It has six layers comprising of three convolutional layers, one
max pooling layer, one fully connected layer and a softmax layer.
The kernel size for all three convolutional layers is 3 � 3. The num-
ber of filters is started with three for first convolutional layer and
increased to six and nine for second and third layer respectively.
The size of output feature maps of every convolutional layer is
retained, to maintain the original information of the input image
patch (padding = ‘same’). Pooling layer with 2 � 2 filter size is
applied after third convolutional layer, as image patches are small
and pooling will not help in the beginning layers. The convolu-
tional layers and pooling layer consider all the image pixels (stride
is set to one) into convolution and down sampling operation,
respectively. Convolutional layer uses ReLU activation function
which is one of the most efficient and powerful activation func-
tions to add non-linearity in the network. It has many advantages
such as fast gradient propagation, good control on vanishing gradi-
ent and computationally efficient because of not activating all
neurons simultaneously and has convergence better than sigmoid.
binary crossentropy was used as the loss function. Regularization
was adopted through dropout that is calibrated to 0.25 probability
value and is attached after the FC layer to avoid overfitting. Finally,
the fully connected layer is followed by a softmax layer to form
probability distribution from the network’s output over two
classes.

2.3.2. Transfer learning
Four deep CNNs AlexNet, GoogLeNet, ResNet50 and Dense-

Net201, originally trained on ImageNet dataset, are chosen based
Fig. 5. 2D convolutional neural ne
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on their popularity in research class and their astonishing perfor-
mance in RS applications. In this research study, performance of
pre-trained deep CNNs on the created CaneSat dataset is evaluated
by employing two techniques of transfer learning. In first tech-
nique, so-called fine tuning, trained weights of these pre-trained
deep CNNs are transferred and only final fully connected layer is
fine-tuned with respect to the target dataset as shown in Fig. 6,
highlighted in red.

In second technique, pre-trained CNNs are exploited as FE.
From the literature survey, it is observed that deep features work
well in classification problem compared to the conventional fea-
tures. We can extract deep features from any of the layers of
the deep networks. In the present study, features are retrieved
from FC7, FC1000, global average pool and avgpool layers of Alex-
Net, GoogLeNet, ResNet50 and DenseNet20 respectively and
passed on to the SVM classifier by passing the Softmax layer to
classify sugarcane and non-sugarcane (Fig. 6, highlighted in
green). Literature survey reveals that the SVM is best for crop
classification from satellite images. Hence, it is employed as clas-
sifier in the transfer learning implementation. The radial basis
function is used for SVM kernel with ‘C’ parameter having value
one and gamma is set to value 0.6. The batch size is fixed to
128. At the 14th epoch model has converged with learning rate
of 0.001. The optimization was achieved by advanced adaptive
moment (Adam) optimizer and the loss function was selected
as cross-entropy.

2.3.3. RF and SVM ML techniques
The research utilized two widely employed machine-leaning

approaches for crop classification, RF and SVM, to compare them
with DL techniques. In fact, RF and SVM methods have been com-
monly used as baseline models for the DL approach to RS classifi-
cation tasks (Mahdianpari et al., 2018; Makantasis et al., 2015).
The RF is an ensemble of multiple decision trees working on boot-
strap data (Breiman, 2001). The SVM is a statistical learning classi-
fier tries to find optimal hyperplane between classes with the help
of kernel functions (Cortes and Vapnik, 1995). The classification
was conducted using Sentinel-2 time series data and was imple-
mented in R language.

3. Results and discussion

Here, we exhibit and discuss experimentation results of the
research work. Firstly, the success of the 2D CNN model for
classifying sugarcane is explored. Next, the specified pre-
trained networks are capable of generalizing RS data for crop
classification is tested, employing two techniques using the
CaneSat dataset. One of the aspects of this evaluation is to find
how well transfer learning performs on a small RS dataset as
compared to the available big RS datasets such as UCM, BCD
and RS19.
twork on the CaneSat dataset.



Fig. 6. CNNs with fine tuning (highlighted in red) and as FE with SVM classifier (highlighted in green).
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3.1. 2D CNN model’s evaluation for sugarcane classification

Several experiments have been carried out to investigate the
performance of the model on the newly created ‘CaneSat’ dataset.
The CaneSat dataset was split into 70% for training and 30% for
testing which observed good accuracy. Further, the training dataset
is divided into 70% for training and 30% for validation. Batch size is
calibrated to 128 which contributes in accuracy boost up. The
trainable parameters of the model are 3110. The training and the
testing datasets are normalized after undergoing through atmo-
spheric corrections. Another transformation technique in neural
network, called standardization plays an important role in the
classification results. In our case the training and the testing data-
sets have undergone the standardization phase through StandardS-
caler function. The learning rate was set to 0.001. The model has
converged in 14 epochs with the Adam optimizer. Adam was opted
because of its faster convergence rate than stochastic gradient des-
cent (SGD) and RMSProp (Kingma and Ba, 2014). In our scenario,
various experiments were carried out to investigate Adam, SGD
and RMSProp optimizers. SGD performs closest to Adam with the
difference of 3–4% less accuracy compared to Adam. With this con-
figuration, the 2D CNN model trained on the CaneSat dataset
reveals significant performance for sugarcane crop classification
with 88.46% overall accuracy. The validation accuracy reached up
to 84.65% concludes that the model possesses good generalization
ability. Fig. 7 depicts model’s training and validation accuracy and
training and validation loss.

The sugarcane crop was correctly identified with an accuracy of
86.99% and non-sugarcane areas with high accuracy of 90.12%. The
time taken to train the model is 1.80 min (Table 2). In literature,
LULC classification from RS data are more exploited using DL
framework than crop type mapping and achieved promising
8

results with accuracy above 90% (Penatti et al., 2015). 1D CNN
was successfully exploited by Helber et al. (2019) for crop classifi-
cation by attaining 82.41% accuracy. In LULC classification few
crops are considered in their studies, but we found fewer studies
considering sugarcane crop (Ienco et al., 2019). We accomplished
relatively good accuracy with the 2D CNN model on CaneSat data-
set containing fewer numbers of samples compared to other large-
scale datasets that confirms the potential of CNN in sugarcane
classification.

3.2. Pre-trained models’ evaluation for sugarcane classification

Confusion matrix defines confusion among classes is used to
evaluate all four deep CNNs. Confusion matrices of deep CNNs fine
tuning and as FE with SVM classifier are shown in Fig. 8. As illus-
trated by the confusion matrices (Fig. 8), all CNNs achieved notable
high accuracy in classifying the sugarcane class. Among all other
networks, GoogLeNet found less confusion (when fine-tuned
8.05% and 1.53% as FE) in classifying the sugarcane class. However,
it has more confusion of 44.05% when fine-tuned and 55.06% as FE
in classifying the non-sugarcane class. An uncertainty of 33.04%,
31.71%, 20.26% in fine-tuning method and 22.90%, 23.79%, 16.74%
in FE method exists in classifying the non-sugarcane class for Alex-
Net, ResNet50 and DenseNet201 respectively. Non-sugarcane class
was comparatively correctly classified by DenseNet201 in the both
modalities with accuracy of 83.25% as fine-tuned and 79.73% accu-
racy as FE. Both the classes’ F1 scores are compared in Fig. 9 for the
transfer learning techniques, fine tuning and CNNs as FE.

2D CNN was executed on a CPU whereas transfer learning was
implemented on a GPU. Table 2 presents comparison of model’s
performance regarding the required training time and achieved
accuracy by the pre-trained models on the CaneSat dataset. From



Fig. 6 (continued)
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the obtained results of the study, it is observed that AlexNet con-
verged in less training time than all other three networks. It is
because of its smaller number of layers and parameters and giving
better accuracy than GoogLeNet. As observed from Table 2
ResNet50 and DenseNet201 required comparatively more time
than AlexNet and GoogLeNet due to the deep nature of their struc-
9

ture. One of the most attentive features of the achieved results in
this present study is that deep CNNs used as FE produced better
results than fine tuning modality for all CNNs except GoogLeNet.
In fact, a significant difference exists between our dataset and
the original dataset which these CNNs were trained on. An optimal
approach will also be a fine-tuning approach if low level features of



Fig. 6 (continued)

Fig. 6 (continued)
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Fig. 7. 2D CNN’s (a) training and validation accuracy (b) training and validation loss.

Table 2
Comparison of models’ performance.

Model Full Training Fine Tuning Deep CNNs as FE

Training-time (minutes) Accuracy (%) Training-time (minutes) Accuracy (%) Training-time (minutes) Accuracy (%)

SVM 0.20 80.38
RF 0.21 84.00
2D CNN 1.80 88.46 – – – –
AlexNet – 7.28 75.81 7.38 78.28
GoogLeNet – 30.40 74.18 14.41 73.56
ResNet50 – 34.60 77.86 36.24 85.65
DenseNet201 – 181.11 78.68 177.17 87.70

Fig. 8. Confusion matrices of four deep networks in fine tuning (FT) and as FE with SVM classifier (highlighted in green).
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the interest dataset were found to be close to those on which the
CNNs were trained on.

However, the low-level features such as color, texture and
contours of ImageNet data set objects vary to some degree from
the objects of our dataset. It may explain why the fine-tuning
method acquires less accuracy than used as FE. In our case, a
layer before classification layer is fine-tuned, however, the
results may differ in this method by changing the number of lay-
ers to be fine-tuned. Fine-tunned AlexNet performs as closely as
other advanced networks. Features extracted from first or second
11
layer of the AlexNet for high resolution RS dataset (UCM)
achieved remarkable accuracy (95%) (Hu et al., 2015). GoogLe-
Net’s performance remains good in its fine-tuning strategy with
74.18% accuracy over its use as feature extractor with SVM clas-
sifier, resulting in 73.56% accuracy. In our study, deep CNNs are
used as FE and features are extracted from a layer before the
classification (softmax) layer from the original network. So, the
classification process of the original network is changed. The
emphasis is on discovering how well deep features function on
datasets that are different in nature from the original datasets



Fig. 9. Comparison of F1 score of AlexNet, GoogLeNet, ResNet50 and DenseNet201.
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used to trained deep networks. Here, the deep features extracted
using CNNs are fed to the SVM classifier rather than a softmax
layer. The softmax layer is essentially a logistic regression gener-
alization; it operates on the concept of assigning probabilities to
each class label. Crop classification requires a comprehensive
methodology to distinguish sugarcane with other crops and land
covers that cannot be done effectively by a regression methodol-
ogy. Therefore, we used features extracted using CNNs and fed
them as input to an SVM classifier. SVM classifier is essentially
designed to resolve classification problems and is the most pro-
ven classifier with fewer samples, without losing precision in RS
image classification tasks including LULC and crop classification.
The result on CaneSat dataset demonstrates the capacity of CNNs
extracted features to generalize to the multispectral RS data for
crop classification. GoogLeNet performance in this study found to
be lower than AlexNet, is close to the study results reported in
Nogueira et al. (2017) when both CNNs are used as FE with
RBF SVM for UCM, RS19 and BCS datasets (AlexNet > 93% accu-
racy and GoogLeNet with 92.80% for UCM dataset). Features
extracted by GoogLeNet and classified by softmax layer instead
of SVM reached 90.75% accuracy and when fine-tuned 84.00%
accuracy on BCS dataset (97.10% and 94.38% for UCM dataset)
found by Castelluccio et al. (2015). ResNet50 and DenseNet201
trained on CaneSat dataset achieved significant high overall
accuracy of 85.65% and 87.70%, respectively, when used as FE
with SVM classifier compared to fine tuning method. Using fine
tuning method ResNet50 and DenseNet201 gained accuracies
77.86% and 78.68%, respectively. These findings contrast with
the findings recorded by Mahdianpari et al. (2018) for wetland
classification using green, red and infrared bands for ResNet50
(93.00%) and DenseNet121 (86.90%). DenseNet121 under per-
formed in their analysis as against VGG16, VGG19, InceptionV3,
ResNet50 and InceptionResNetV2.

3.3. RF and SVM classification

The two ML techniques RF and SVM have been implemented on
the CaneSat dataset to compare deep networks’ ability in crop clas-
sification. The input given to these classifiers are Sentinel-2 time
series during Oct. 2018 – May 2019. As shown in Table 2, RF and
SVM classified sugarcane and non-sugarcane with relatively low
overall accuracies (84.00%, 80.38%) than our 2D CNN.
12
4. Conclusion

This research work addresses the problem of sugarcane crop
classification. For this endeavor, a novel dataset is prepared from
the open and freely available Sentinel-2 A/B satellite images dis-
pensed by ESA’s Copernicus program. The presented CaneSat data-
set consists of sugarcane monthly samples covering all the stages
from one month to 12 months along with other land cover sam-
ples. The dataset comprises overall 1627 samples labeled in two
classes, sugarcane and non-sugarcane. The key emphasis here is
to cover all the growing phases of sugarcane crop to train the net-
work. Dataset images are labeled and available in two formats i.e.
jpg and tif format. It covers four talukas of the Karnataka state of
the India. All the geo-tiff images are prepared by using six spectral
bands of the remotely sensed images and are geo-referenced. A
model using 2D CNN is developed for this dataset to classify sugar-
cane and the other land covers. Further, deep CNNs, namely, Alex-
Net, GoogLeNet, ResNet50 and DenseNet201 performances are
evaluated when fine-tuned and used as FE with SVM classifier on
this dataset. The results illustrate that the 2D CNN model achieves
88.46% accuracy with six layers in the network. On the other hand,
all deep networks perform well when used as FE. We achieved
81.76% and 74.66% average f1 scores for the sugarcane and the
non-sugarcane class respectively and an average overall accuracy
of 78.97%, despite the challenges of small sugarcane sample size
and a smaller number of images in the dataset as compared to
the popular RS LULC datasets such as UCMerced and EuroSat. The
GoogLeNet (74.18% and 73.56%) is little incompetent than all other
models. The DenseNet201 (87.70%) followed by the ResNet50
(85.65%) demonstrate noticeable accuracy. Fine tuning of AlexNet,
ResNet50, DenseNet201 and GoogLeNet before softmax layer
gained 75.81%, 77.86%, 78.68% and 74.18% accuracies, respectively.

In summary, ResNet50 extracts global features using skip con-
nection so has powerful representation and DenseNet201 extracts
features from all complexity levels which is possible due to the
dense construction in the network. Therefore, ResNet50 and Den-
seNet201 gained significant accuracy in classification task, which
is confirmed in our case as well, when used them as FE along with
the SVM classifier.

The presented CaneSat dataset is a great step to leverage the
openly available satellite images in the agriculture domain specif-
ically in monitoring vegetations at a regional level. Though the
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CaneSat dataset is different than the Imagenet dataset on which
the deep CNNs were trained on, the results of the present research
work exhibit the generalization ability of these pre-trained CNNs in
classifying the multispectral remotely sensed data.

It is intended to work in future on the quality of the sugarcane
such as healthy, biotic and abiotic stressed crops. Further, to inves-
tigate the potential of deep networks on SAR images for sugarcane
and non-sugarcane classification.
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