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Abstract: In through wall imaging, clutter plays an important role in the detection of objects behind
the wall. In the literature, extensive studies have been carried out to eliminate clutter in the case of
targets with the same dielectric. Existing clutter reduction techniques, such as the sub-space approach,
differential approach, entropy-based time gating, etc., are able to detect a single target or two targets
with the same dielectric behind the wall. In a real-time scenario, it is not necessary that targets with
the same dielectric will be present behind the wall. Very few studies are available for the detection
of targets with different dielectrics; here we termed it “contrast target detection” in the same scene.
Recently, low-rank approximation (LRA) was proposed to reduce random noise in the data. In this
paper, a novel method based on entropy thresholding for low-rank approximation is introduced for
contrast target detection. It was observed that our proposed method gives satisfactory results.

Keywords: through-wall imaging; contrast target detection; clutter reduction; entropy thresholding;
low-rank approximation

1. Introduction

Through wall imaging (TWI) is emerging as an important technology for surveillance, security and
rescue missions. The main aim of TWI is seeing through a wall with the help of electromagnetic waves.
In any radar system, the signal-to-clutter ratio (SCR) plays an important role in the improvement of
the detection of the objects. The SCR can be improved either by classical or statistical methods [1].
Classical methods use different classical digital filters, while statistical methods exploit the statistical
nature of the received signal to separate the clutter from the signal.

Digital filtering technique [2] uses frequency analysis of the clutter geometrical model and the
signal geometrical model, while in [3], the coupled iterative procedure was used to reduce the ground
reflections for the application of ground penetrating radar (GPR). The classical clutter reduction
algorithm (CCRA) was proposed in [4,5], but this method does not optimize the coefficients for the
representation of noise and the target. Kalman filtering uses the background component model
in [6], but designing the Kalman filter is computationally intensive. Parametric clutter reduction was
proposed in [3] by modeling the variations in the received signal, but it requires a reference signal,
which cannot practically be made available.

In the literature, various statistical clutter reduction techniques have been proposed. Different
statistical reduction techniques were compared in [7]. Verma et al. [1] applied various statistical
techniques for clutter reduction such as singular value decomposition (SVD), principle component
analysis (PCA), factor analysis (FA), and independent component analysis (ICA), and concluded that
ICA performs better for the detection of low dielectric material behind a wall.
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The major contribution to the clutter in TWI is due to reflections from the wall. Different wall
removal techniques are proposed in the literature, such as the sub-space projection approach that
is used in [8] for wall removal. SVD frequently using the sub-space projection approach for clutter
reduction, and it has previously been used to enhance the signal-to-clutter ratio for the application
of ground penetrating radar (GPR) [9] and TWI in [10]. In SVD, Eigen-images of the B-scan are
determined and used to identify wall clutter and target subspace. In [11], it is stated that the first two
Eigen-values correspond to the wall and target, respectively, but [8] shows that wall clutter is spread
along with the high dimensional subspace and weak wall singular components interleave with target
subcarriers. Recently, the empirical low- rank approximation method was proposed in [12] for seismic
data, where all Eigen-values corresponding to the noise subspace were considered to identify the weak
signals. If we consider all the Eigen-values along with the Eigen-values corresponding to the signal,
then noise is also get added in the signal.

Compared to other imaging systems such as GPR and biomedical, TWI has to deal with more
severe problems like changes in the propagation environment and sensor positioning [13,14]. Another
problem in TWI is the propagation medium, where multiple unknowns and either homogenous or
non-homogenous walls are involved [15]. In a real-time scenario, it may be possible that targets with
different dielectrics will be present behind the wall. It is challenging to detect low dielectric targets
such as wood (≈4) in the presence of metal (≈∞) behind the wall because in TWI images, low dielectric
targets are obscured in the presence of high noise. We termed the target detection and imaging problem
in which targets with different dielectrics are present as “contrast target detection” and “contrast target
imaging”, respectively. The contribution of this paper is that first we propose a novel method to detect
contrast targets using a sub-space projection approach based on low rank approximation (LRA) and
modify it using entropy in the Eigen-values to reduce the clutter from the useful signal. Second, we
solve the inherent problem of considering a large rank for the signal recovery in LRA by introducing
an entropy-based threshold. The critical analysis of existing clutter reduction techniques shows that
they cannot detect contrast targets in the scene. The performance of the proposed method is compared
with other traditional techniques such as an average trace subtraction, subspace projection, entropy
based time gating, SVD, ICA and the differential approach for the targets having contrast dielectrics.

The remainder of this paper is organized as follows. Geometry for the TWI imaging is presented in
Section 2. Different clutter reduction techniques are presented along with the results in Section 3. Novel
methods for entropy-based low-rank approximation for contrast imaging is proposed in Section 4.
Section 5 concludes the paper.

2. TWI Data Collection and Beamforming

2.1. Data Collection

Data is collected by placing different dielectric materials such as metal or wood behind the wall
at different distances in our experimental work. Synthetic aperture radar (SAR) in the multi-static
mode in which an array of antennas are used to scan the whole wall at M different locations, and the
reflection coefficient (S11) is measured for P- targets in the scene using system parameters given in
Table 1 and then set-up, which is shown in Figure 1. Received frequency domain data is converted to
time domain [16]

Step (1): Transformation from Time domain to spatial domain

Time domain signal is converted to spatial domain to determine the range profile by using
z = c ∗ t/2 where c is the speed of light and t is a delay.

Step (2): External calibration

The metallic plate is placed in front of the antenna [17] to find the delay due to the antenna system,
which will be subtracted from the observed data. The range profile is corrected using the difference in
the delay.
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Step (3): Velocity correction

As the antenna is placed at the standoff distance from the wall, the signal propagates through the
air, then the wall and again through the air up to the target. The presence of the wall scattered the
signal, and shifting of the target position took place. This shifting was compensated using the method
of velocity correction. The mathematical equation for this is given next in the paper.

Table 1. System parameters.

Sr. No. Parameters Value

01 Radar type SFCW
02 Frequency range 1 GHz–3 GHz
03 Transmitted power 3 dBm
04 Number of frequency points 201
05 Bandwidth 2 GHz
06 Cross-range resolution 15 cm
07 Down-range resolution 7.5 cm
08 Polarization VV
09 Antenna type Horn
10 Gain of Antenna 20 dB
11 Beam-width 15.92◦ and 17.02◦
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2.2. Beamforming

The antenna is placed in front of the wall at a fixed standoff distance and data is collected for M
different locations that received the signal, represented as Equation (1).

x(n, t) =
P−1∑
p=0

σps(t− τn,p) (1)

where s(t) is the transmitted signal convolved with the transfer function of the wall [14] for the SFCW
radar. σp is the reflection coefficient, and τn,p is the two-way delay—the time between the nth antenna
position and the target P. When the signal propagates between the nth antenna positions and pth target,
the two-way delay-time is given as Equation (2)

τn,p =
2
c

√
(xp − xn)

2 + (yp − yn)
2 (2)

where c is the speed of light.
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In this paper, the focused image has been developed using DS (delay-and-sum) beamforming for
collected data. The ith pixel value in the DS image is given by Equation (3)

b(i, j) =
1
N

N−1∑
n=o

x(n, t + τn(i, j)) (3)

where τn(i, j) is the propagation delay on both sides of the wall. The SFCW radar, for which stepped
size depends upon the selection of frequency bins, requires trade-off between a number of frequency
bins and scanning time. The SFCW radar waveform consists of Q- narrowband signals defined as
Equation (4)

b(i, j) =
N−1∑
n=o

Q−1∑
q=o

x(n, fq) (4)

where x(n, fq) is the signal received at the nth antenna position for the frequency q.
S11 data is collected either in the time domain or frequency domain [18]. We collected data for

three targets with different dielectrics by arranging them at different positions behind the wall (refer to
Appendix A). Our method was tested on collected data for illustration purposes, with a few results
given in Sections 3 and 4. The geometry for the TWI is shown in Figure 2, if we consider the point
target at Xp, then developing the image transformation is required from the time to the spatial domain.
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Delay-sum-beamforming is the most popular and least complex imaging algorithm, interested
readers may refer to [19] for more details. The signal received at the antenna location is z[m, q] of the
frequency fn with a delay τp,m, then z[m, q] can be represented as Equation (5)

z[m, q] =
P−1∑
p=0

σp exp
{
− j2π fnτp,m

}
(5)

where m and q represents the spatial index and frequency index, respectively. In our experimental
set-up, we considered a homogenous wall of thickness d = 15 cm and relative permittivity of the wall
of εw = 5.3. The dielectric constant of the wall is measured as described in [20]. The distance from the
antenna to the wall is (za) and from a wall to the target is (zt). The velocity correction [21] for geometry
shown in Figure 2 is given by Equation (6)

dv = za + d
√
εw + zt (6)

where dv is the actual distance between the antenna and the target after velocity correction. τn,p can be
estimated by putting Equation (6) into Equation (2)

τn,p =

√
(xtr0 − xtrn)

2 + (dv + Xp)
2 (7)
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We can recover the image s[k, l] by DS–beamforming using Equation (8)

s[xk, zl] =
1

MQ

M−1∑
m=0

Q−1∑
q=0

z[m, q] exp
{
j2π fn τn,p} (8)

where k and l are the number of pixels in the image.

3. Clutter Reduction Techniques

Clutter is the unwanted reflections due to other objects in the room. Clutter overwhelms the
target, and so clutter reduction techniques can be used to separate clutter from the target. The data
collected for the nth observation can be denoted as

s(t) = sa(t) + sw(t) + sp(t) (9)

where sa(t) are the reflections due to an antenna mismatch, sw(t) are the reflections due to the wall
and sp(t) are the contribution due to p (the number of targets behind the wall). The discrete form of
collected data for M antenna locations at N different instances can be arranged in an M ×N data matrix.

s = [s0, s1, . . . , sM−1] (10)

We try to separate the sp(t) signal from sa(t) and sw(t) using clutter reduction methods [22].
Imaging for raw data was done with the help of DS beamforming as discussed in Section 2. Raw

normalized images for different targets after pre-processing are shown in Figure 3. It can be seen from
the DS images for different targets, along with the target, clutter due to the wall and other objects also
dominate, which may obscure the target. The reflections from the low dielectric targets are generally
weak compared to clutter from the interior and exterior of the wall, making detection of such targets
difficult. Efficient clutter reduction technique is required to remove the clutter from the B-scan image
to detect low dielectric targets [23]. After pre-processing, different commonly used clutter reduction
techniques are implemented and the results of this are discussed here. Their performance is given in
terms of the PSNR (peak signal-to-noise ratio) [24].
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3.1. Average Trace Subtraction

In general, clutter remains constant with respect to target reflections for data collected [25], hence
we can consider that clutter will be constant for a homogenous wall. We can separate a constant signal
from the non-constant signal using spatial filtering [26] in the time domain, which can be represented as

sav(n, m) = s(n, m) − s(m) m = 0 . . .M− 1
Where s(m) = 1

N
∑N−1

n=0 s(n, m) m = 0 . . .M− 1
(11)

where s(n, m) is the data matrix element and s(m) is the average of the data matrix. The Fourier
transform for (11) can be given as

_
s av(kx, m) =

N−1∑
n=0

sav(n, m) exp(−ikxn∆x)∆x

=
_
s (kx, m) − s(m)

sin(N∆xkx/2)
sin(∆xkx/2) ∗ exp[−i∆xkx(N − 1)/2]

(12)

where kx represents spatial frequency (∆x ≤ 2π/k0), and k0 is the frequency wave number. This condition
cover [−k0,k0] and no filtering is introduced by the grating lobe. Due to the Dirichlet condition appearing
in Equation (12), the low-frequency spatial spectrum of target signal sn will also get rejected, and due to
this target which is placed near the wall, cannot be detected.

3.2. Differential Approach

In this approach the clutter is removed by subtracting the adjacent two traces [27], for the time
domain data this is represented as [28]

sDA(n, m) = s(n + 1, m) − s(n, m) m = 0 . . . . . .M− 1, n = 0 . . . . . . .N − 2 (13)

The corresponding spatial spectrum can be given as

_
s DA(kx, m) ' 2 j

_
s (kx, m)(sin(

kx∆x
2

)) (14)

The observation point corresponds to xn = (n + 1/2)∆x n = 0, . . . , N − 1 and n = 0, . . . , N−2 in
the first and second term. It can be seen from Equation (14) that de-cluttering can be achieved locally
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and that not all traces are exploited simultaneously. If ∆x is very small, then the sin term rises very
slowly, and if it is very high, then artifacts corrupt the reconstruction.

3.3. Subspace Projection Approach

Subspace approaches are used to separate out complementary subspaces, called the target and
clutter, in order to increase SCR. In the literature, many methods for clutter reduction using the
subspace projection approach are given. Here we will restrict our discussion to SVD and ICA.

3.3.1. Singular Value Decomposition (SVD)

SVD is the most efficient technique from linear algebra for clutter reduction. SVD decomposition
of the B-scan matrix (S) of dimension M × N is given by

S = UDVT (15)

where U = [U1, U2, . . . , UM] and V = [V1, V2, . . . , VN] are the left and right singular matrix whose
column are Eigen-vectors. The D matrix is the diagonal matrix for which singular values are arranged
in decreasing order. The B-scan matrix for SVD of S is given by

S =
N∑

i=1

wiuivi
T (16)

where uivi
T are the Eigen-component and wi is the Eigen-value for the ith component. The first

Eigen-value represents the strong reflections, which are generally from the wall in the case of TWI, the
remaining values represent other reflections from the target and noise. We can categorize Eigen-space
into target sub-space and noise sub-space. Let Ei = uivi

T then

E = [E1→k
∣∣∣Ek+1→p

∣∣∣Ep+1→N] (17)

where E1→k represents strong reflections, Ek+1→p represents reflections from the target and Ep+1→N
represents noise.

3.3.2. Independent Component Analysis (ICA)

ICA divides the data into statistically independent components. Statistical independence considers
higher order moments for data matrix S. ICA takes a linear combination of Sx such that

Ix =
N∑

j=1

ai js j j = 1, 2, . . .NI = SA (18)

where A is the matrix holding N independent source components. The output signal matrix Y is for
the input matrix, matrix I can be determined with the help of the full rank matrix (W), such that

Y = WI (19)

where W is the matrix which makes I as independent as possible for dependent sensor signals S.

3.4. Entropy-based Time Gating

Recently in [25], entropy-based time gating was proposed for clutter reduction, and it is shown
that this method is efficient for clutter reduction compared to earlier methods in the literature. In this
method behavior of the clutter, which is similar over each time trace, is used to exploit the entropy.



Electronics 2019, 8, 634 8 of 17

Clutter signal gives higher entropy compared to the target. The threshold set in this paper is as
Equation (20)

W(m) = 0 if entropy ≥ α log (N − 1) andW(m) = 1 elsewhere (20)

where α < 1 is the tolerance for the threshold and N is the number of scanning points
The time trace after incorporating the threshold is given as

ew(n, m) = W(m)e(n, m) (21)

To illustrate the results using the above methods, we used the data collected with a single metal
target and two targets of metal and wood for contrast imaging as described in Section 2. The PSNR for
each method in both cases is given in Tables 2 and 3.

Table 2. PSNR in dB for Metal target.

Sr. No. Clutter Reduction Method PSNR in dB

1. Average trace subtraction 10.7504
2. Singular value decomposition 7.6220
3. Differential approach 10.1494
4. Independent component analysis 12.6255

Table 3. PSNR in dB for Metal and wood.

Sr. No. Clutter Reduction Method PSNR in dB

1. Average trace subtraction 9.9608
2. Singular value decomposition 9.8052
3. Differential approach 9.3390
4. Independent component analysis 12.8549

It can be seen from Figure 4 that both targets are visible along with some clutter by using average
trace subtraction, but they are not visible by other methods. It is necessary to develop an efficient
clutter removal technique to detect a weak target in the presence of the strong clutter.

PSNR is the ratio to analyze the distortion in the final image with respect to the input low-resolution
image is given by

PSNR = 10 log10
1

MSE
(22)

MSE =
(O.I.− F.I.)2

(V.P. ∗H.P.)
(23)

where

MSE—Mean square error
O.I.—Original normalized image
F.I.—Final image
V.P.—Number of vertical scanning points
H.P.—Number of horizontal scanning points

It can be observed from Tables 1 and 2, the PSNR for ICA is high among all other clutter reduction
techniques. Even if ICA is efficient for the detection of the low dielectric target it cannot detect a wood
target when it is placed at a different down range position compared to the metal target.
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Figure 4. B-scan images. (a) Average trace subtraction for metal target; (b) Differential approach for
metal target; (c) SVD for metal target; (d) ICA for metal target; (e) Entropy-based time gating for metal
target; (f) Average trace subtraction for metal and wood targets; (g) Differential approach for metal and
wood targets; (h) SVD for metal and wood targets; (i) ICA for metal and wood targets; (j) Entropy-based
time gating for metal and wood targets where color bar represents normalized intensity values.

4. A Proposed Novel Method for Contrast Imaging

Low-rank approximation (LRA) has been used recently for seismic data [12]. LRA is efficient
compared to SVD and ICA as it exploits the noise space by considering the large rank, this motivates
us to use LRA for the detection of contrast targets. LRA is a rank reduction technique, the principle
requirement of the LRA is that the data should be low rank. In TWI imaging, the number of targets are
less than the number of scanning points (P < MN), hence the collected data is inherently sparse and
low rank. Steps for traditional LRA are

Step (1): Calculate the SVD for data matrix S.

S = U ∗D ∗VT (24)

Step (2): Select n largest diagonal singular values from the matrix D and set other values to zero.

_
D = D(1 : n, 1 : n) (25)

Step (3): Calculate the LRA matrix.
_
S = U

_
DVT (26)

While selecting the n largest singular or Eigen-values from matrix D, we ignore the first Eigen-value,
which represents the strongest reflections from the wall [1]. The modified LRA for TWI can be given as

Step (4): Ignore first Eigen-value corresponding to wall reflections, hence the matrix D is given as

_
D = D(2 : n, 2 : n) (27)

To satisfy the principle of the algorithm, LRA works in the local windows, where deciding the
optimum rank is difficult. Since LRA cannot estimate the optimum rank in the local window, it will
consider the large rank to preserve the useful energy in the signal. In the attempt to preserve the
useful energy using the large rank, unwanted clutter is also added to the signal. This problem can be
solved by using an optimum threshold while selecting Eigen-values during the reconstruction of the
useful signal.

Step (5): Select the optimum threshold for Eigen-values from LRA using the entropy-based criterion.
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We used the entropy-based criterion [25] for selecting the threshold for the Eigen-values in the
LRA. The idea for entropy-based thresholding was adapted to discriminate between target and clutter
signals. To select the optimum threshold, we consider the criteria that entropy is maximum for clutter
and minimum for the target. First, we construct the normalized time traces as

SNz(n, m) =
S(n, m)2

N−1∑
l=0

S(l, m)2
m = 0, 1, . . . , M− 1 (28)

Now SNz(n, m) ≥ 0 and
n−1∑
n=0

SNz(n, m) = 1 for all m (29)

At each instant, normalized data is considered to be a probability density function (PDF) [29].
Introducing PDF allows us to adopt the entropy-based criterion to determine the threshold and entropy
measure, which is given as

ES(m) = −
N−1∑
n=0

SNz(n, m) log(SNz(n, m)) (30)

The entropy of the clutter signals gives large values and the clutter in the observations is generally
constant, hence the average value for the Eigen-values can be the optimum threshold. The flow chart
for the proposed method is given in Figure 5.Electronics 2019, 8, 634 12 of 18 
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Figure 5. Flow chart for the proposed method.

For subspace approaches, such as SVD and ICA, only a few dominant Eigen-values are considered
as the target and lower Eigen-values are considered as the noise, as a result, weak targets are considered
as noise. In the proposed developed method, we consider all the Eigen-values and set the optimum
threshold to eliminate the noise–space, hence we are able to detect weak targets such as wood along
with a strong target such as metal.

The data is processed with different targets to check the capability of the method. For contrast
imaging, two targets with different dielectrics are chosen behind the wall, i.e., metal and wood. The
results for which are shown in Figure 6.
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Figure 6. B- scan images with a proposed method with (a) Target ID 01: single metal target, (b) Target
ID 02: single wood target, (c) Target ID 05: Two metal targets, (d) Target ID 07: Metal and wood targets
where color bar represents normalized intensity values.

5. Conclusions

In this paper, the problem of contrast imaging is addressed and it is shown that our developed
method is able to detect a weak target in the presence of a strong target. The inherent problem of
considering the large rank in LRA is solved by setting the optimum threshold using the entropy-based
criterion. The entropy-based LRA method was compared to other methods, such as average trace
subtraction, entropy-based time gating, SVD, ICA and DA, and found to be very effective for different
types and arrangements of the target.

Another advantage of the proposed method is that it also avoids the filtering of low spatial targets
and therefore this method allows a better reconstruction of low as well as high dielectric targets in the
scene. In our future work, we are going to work on rank optimization problem of LRA.

Author Contributions: Conceptualization, Experimental details, D.S.; Supervision, D.S.; Writing—original draft,
Experimental work, M.B.; Writing—review & editing, D.S. and H.K.
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Appendix A

We collected 45 datum points for different arrangements of a target position behind the wall,
target size and target thickness. The distance of the target is measured from the antenna mouth. Table 3
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gives target types while Figures A1–A3 gives A-scan, B-scan and C-scan images using the proposed
method as described in Section 4, which are given for validation.

Table A1. Types of targets.

Target ID Number of
Targets Target Type The Distance of the Targets

from the Antenna Mouth Target Size/Thickness

01 01 Metal 2.3 m 17.5 cm × 14.5 cm/1 cm

02 01 Wood 1.5 m Thick wood: 50 cm × 30 cm/2 cm
Thin wood: 30 cm × 30 cm/1 cm

03 01 Teflon 1.5 m 50 cm × 40 cm/1 cm

04 02 Metal-Metal 3 m 17.5 cm × 14.5 cm/1 cm

05 02 Metal-Metal 2.3 m and 3 m 17.5 cm × 14.5 cm/1 cm

06 02 Metal-Wood 1.73 m 17.5 cm × 14.5 cm/1 cm,
Thick wood: 50 cm × 30 cm/2 cm

07 02 Metal-Wood 2.3 m and 1.5 m 17.5 cm × 14.5 cm/1 cm,
Thick wood: 50 cm × 30 cm/2 cm

08 02 Metal-Teflon 2.3 m 17.5 cm × 14.5 cm/1 cm,
50 cm × 40 cm/1 cm

09 02 Metal-Teflon 2.3 m and 1 m 17.5 cm × 14.5 cm/1 cm,
50 cm × 40 cm/1 cm

10 02 Wood (thick)–Wood (thin) 1.73 m Thick wood: 50 cm × 30 cm/2 cm
Thin wood: 30 cm × 30 cm/ 1 cm

11 02 Wood (thick)–Wood (thin) 3.5 m and 2.5 m Thick wood: 50 cm × 30 cm/2 cm
Thin wood: 30 cm × 30 cm/1 cm

12 03 Metal Wood (Thick)-Wood (thin) 1.5 m
17.5 cm × 14.5 cm/ 1 cm,

Thick wood: 50 cm × 30 cm/2 cm
Thin wood: 30 cm × 30 cm/ 1 cm

13 03 Metal-Wood (Thick)-Wood (thin) 3.5 m, 2.5 m, 1.5 m
17.5 cm × 14.5 cm/ 1 cm,

Thick wood: 50 cm × 30 cm/2 cm
Thin wood: 30 cm × 30 cm/1 cm

TWI scanning methods—In TWI, three types of scanning are done for target detection and shape
identification. The A-Scan or range profile is a dimensional plot, which provides information about
the presence of a target along with the approximate location. The B-Scan gives information about a
number of targets present in the down-range and the C-scan gives information about shape, height,
and width. A-Scan plots for different target ID are shown in Figure A1. B-Scan and C-Scan images are
developed using 30 horizontal scans and 15 vertical scans.Electronics 2019, 8, 634 15 of 18 
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Figure A1. A-scan of different target set-up.
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Figure A2. B-scan images for different targets.
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